3138

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

BOTTLENET: Hiding Network Bottlenecks Using
SDN-Based Topology Deception

Jinwoo Kim™, Jaehyun Nam, Suyeol Lee, Vinod Yegneswaran, Phillip Porras,
and Seungwon Shin™, Member, IEEE

Abstract— The robustness of a network’s connectivity to other
networks is often highly dependent on a few critical nodes and
links that tie the network to the larger topology. The failure or
degradation to such network bottlenecks can result in outages
that may propagate throughout the network. Unfortunately,
the presence of the bottlenecks also offers opportunities for
targeted link flooding attacks (LFAs). Researchers have proposed
a new and promising defense to counter LFAs, referred to
as topology deception. This strategy centers on hindering the
discovery of bottlenecks by presenting false trace responses to
adversaries as they perform topological probing of the target
network. Even though the goal of topology deception centers
on obscuring critical links, node dependencies can be exploited
by an adversary. However, current approaches do not consider
a wide range of metrics that may reveal important and diverse
aspects of network bottlenecks. Furthermore, existing approaches
create a simple form of virtual topology, which is subject to rela-
tively easy detection by the adversary, reducing its effectiveness.
In this paper, we propose a comprehensive topology deception
framework, which we refer to as BOTTLENET. Our suggested
approach can analyze various network topology features both
with respect to static and dynamic metrics and then use this
information to identify bottlenecks, finally producing complex
virtual topologies that are resilient to adversarial detection.

Index Terms—Link flooding attacks (LFAs), topology decep-
tion, network robustness, software-defined networking (SDN).

I. INTRODUCTION

HEREAS the Internet has evolved to be a highly
Wrobust communication infrastructure, researchers have
also noted its tendency to exhibit topological properties in
which node connectivity is by no means evenly distributed.
Rather, the topology of Internet segments, regardless of scale,
tends to incorporate a few high-degree nodes that facili-
tate most of the connectivity within the segment’s network

Manuscript received November 5, 2020; revised March 7, 2021 and
April 11, 2021; accepted April 19, 2021. Date of publication April 26, 2021;
date of current version May 21, 2021. This work was supported by the
Institute of Civil Military Technology Cooperation Center (ICMTC) funded by
the South Korea Government (Defense Acquisition Program Administration
(DAPA) and Ministry of Trade, Industry and Energy (MOTIE)) under Grant
18-CM-SW-09. The associate editor coordinating the review of this manuscript
and approving it for publication was Dr. Mika Ylianttila. (Corresponding
author: Seungwon Shin.)

Jinwoo Kim, Suyeol Lee, and Seungwon Shin are with the School of Electri-
cal Engineering, KAIST, Daejeon 34141, South Korea (e-mail: jinwoo.kim@
kaist.ac.kr; 95leesu@kaist.ac.kr; claude @kaist.ac.kr).

Jaehyun Nam is with AccuKnox, Cupertino, CA 95014 USA (e-mail:
jn@accuknox.com).

Vinod Yegneswaran and Phillip Porras are with SRI International, Menlo
Park, CA 94025 USA (e-mail: vinod@csl.sri.com; porras@csl.sri.com).

Digital Object Identifier 10.1109/TTFS.2021.3075845

graph [1]. Unfortunately, from an adversarial perspective,
these high-degree nodes represent strategic bottleneck oppor-
tunities for disrupting the flow of traffic to all nodes and
links (e.g., LFAs) that lay within their connectivity path.
Recognition of this concern has not only been raised in
academia [2]-[7], but its impact has also been observed in
real-world incidents [8], [9].

To address this issue, a variety of tfopology deception
systems have been proposed to reduce the likelihood that such
network bottlenecks will be discovered and exploited. When
an adversary attempts to scan a network, the deception systems
aim to hide network bottlenecks, exposing an alternate virtual
topology. For example, NetHide [10] and Trassare et al. [11]
manipulate TTLs (time to live) of probing packets to create vir-
tual links, and LinkBait [12] and SPIFFY [13] reroute probing
packets to other links to prevent adversaries from collecting
target link information. With such a strategy, bottlenecks can
remain obfuscated from an adversary’s topology construction
process. This concept has been actively discussed in both the
military [11], [14] and cyber security communities [10], [12],
[15] as a promising defense solution.

However, even though prior studies have explored this
mitigation strategy, several important limitations still remain:
First, they primarily focused on a single metric (e.g., the num-
ber of routing paths [11] or flows [10], [12]) to find network
bottlenecks, omitting diverse forms (e.g., link cuts [5], band-
width bottlenecks [16]) not revealed by the limited visibility.
This focus may provide another opportunity that exploits other
bottlenecks that have yet to be considered by an adversary.
Second, the prior work did not produce complex virtual
topologies to deceive the adversary. In part, this was due
to how virtual topology was modeled in an ad-hoc manner
without consideration of complex topological structures [11],
[12], [14], [15] or primarily built for improving the usability
of network debugging tools rather than security [10]. Because
adversaries can exploit diverse topology features [2]-[4], [6],
[17]-[19], a single metric or algorithm is insufficient for
finding all bottlenecks and producing secure virtual topologies.
In addition, it is possible that an adversary can flood arbitrary
nodes and links without believing virtual topologies. However,
none of the prior studies considered the blind LFAs at all.

In this paper, we aim to answer the following research
question; Can we design a comprehensive system that cov-
ers diverse bottlenecks by considering all possible types of
bottlenecks and generates complex virtual topologies by using
the benefits of the existing deception algorithms? To this end,

1556-6021 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 12,2022 at 03:42:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1303-8668
https://orcid.org/0000-0002-1077-5606

KIM et al.: BOTTLENET: HIDING NETWORK BOTTLENECKS USING SDN-BASED TOPOLOGY DECEPTION

we present BOTTLENET, a comprehensive topology deception
framework that provides a wide range of bottleneck metrics
and topology deception algorithms, facilitating the building
and deployment of more secure virtual topologies.

In designing BOTTLENET, we address four key challenges:
First, it is an open question regarding what metrics should be
monitored, considering that many factors determine network
bottlenecks. Second, given diverse bottleneck types, it is diffi-
cult to determine which nodes and links are most vulnerable,
such that their failure would severely impact the robustness
of the network. Third, designed virtual topologies should be
sufficiently complex so that an adversary cannot easily infer
real topologies from observed topology snapshots. Finally,
the virtual topologies should be realized as a practical solution
that can be rapidly deployed in production networks without
imposing expensive costs on network operators.

To address the first problem, BOTTLENET takes the benefits
of global network visibility provided by software-defined
networking (SDN) [20]. SDN enables centralized control that
facilitates network-wide monitoring [21], [22]. With this abil-
ity, we analyze two aspects of bottlenecks: (i) static metrics
that are graph features of network topology and (ii) dynamic
metrics that are fluctuating features according to realtime net-
work flows. Given these metrics, a network operator can pick
and choose criteria for observing desired types of bottlenecks.
For the second challenge, we design an integer linear program-
ming optimization scheme that chooses x-ranked bottlenecks
with the help of the MCDA (multi-criteria decision analysis)
technique. We also design two graph-based heuristics: (i) a
deployment node selection algorithm that chooses the best
position to deploy virtual networks given a distance threshold,
and (ii) a random virtual topology generation algorithm that
synthesizes a scale-free network to generate a complex topol-
ogy structure for making artificial bottlenecks. For the deploy-
ment challenge, we leverage the software switches [23] with
SDN. Software switches enable rapid instantiations of virtual
switches in general-purpose machines, thus helping us deploy
virtual networks rapidly. In addition, SDN provides dynamic
flow control to detect and react to probing packets in advance.
On the basis of these approaches, BOTTLENET designs diverse
actions to orchestrate/manipulate probing packets to hide net-
work bottlenecks and also react to the adversaries who mount
blind LFAs.

In summary, our contributions include the followings:

« We introduce a comprehensive set of bottleneck metrics
that offer diverse insights of network bottlenecks to a
network operator, enabling the discovery of nearly all
possible bottlenecks that can be targeted by adversaries.

o We develop diverse heuristics for analyzing a network
topology and creating secure virtual topologies using the
theory of network graph analysis.

o We implement a prototype of BOTTLENET on a popular
SDN controller, Ryu [24] and evaluate it on real-world
network topologies with large-scale simulations and emu-
lations that demonstrate the effectiveness of BOTTLENET
in hiding network bottlenecks.

The rest of the paper is organized as follows: Section II

begins with a brief introduction to LFAs and prior topology

3139

Decoy
Servers

$ traceroute X
1 A 2367ms

2 B 1.977ms
(a) Topology Probing: probe a target network using tracing tools.

Bottleneck

Bots Bottleneck

Link

Low-rate flows Decoy

Servers
(b) Bottleneck Flooding: make low-rate attack flows with decoy servers.

Fig. 1. An example scenario of LFAs.

deception algorithms, and analyzes their limitations with a
concrete example scenario. Section III surveys related work
pertaining to LFAs and their countermeasures. Section IV
presents a system overview. Section V introduces our metrics,
algorithms, and topology deployment techniques to find/hide
bottlenecks. Section VI presents evaluation results conducted
with large-scale simulations. Section VII discusses remaining
issues of BOTTLENET. We conclude the paper in Section VIII.

II. BACKGROUND AND MOTIVATION

This section briefly presents the background of LFAs and
how previous topology deception algorithms mitigate it with
a detailed scenario. Then, we discuss their limitations and
introduce our high-level approach.

A. LFAs

LFAs aim to congest important routers and links in
(or between) (a) network(s) for the purpose of cutting off
as much network connectivity as possible [3], [4]. Fig. 1
illustrates a typical attack scenario that consists of the two
phases:

Topology Probing. To select suitable target nodes or links,
an adversary first probes a target network using tracing tools
such as traceroute [25], which exploits the TTL field of
an IP header to discover a path from a source to destination.
When the adversary sends low-TTL packets to the destination,
TTL values gradually decrement per router, and then TTL = 0
packets elicit probing responses (i.e., ICMP Time_Exceeded)
of the intermediate routers, enabling the adversary to identify
IP-level nodes and links for each path. From the result,
the adversary analyzes flow density—the number of flows that
pass through a node and link. A high flow density indicates
that such nodes and links can be bottlenecks because they are
involved in many network flows.

Bottleneck Flooding. Based on the obtained topology infor-
mation, the adversary generates attack flows that flood the
target bottleneck nodes or links by employing a large number
of distributed bots. In contrast to traditional DDoS attacks,

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 12,2022 at 03:42:48 UTC from IEEE Xplore. Restrictions apply.

3140

those flows are essentially difficult to detect because bots use
low-rate flows, which is indistinguishable from other benign
traffic [3]. To produce such flows, the adversary maintains
benign sessions with decoy servers that are responsible for
receiving the attack flows. For this purpose, well-known
web/DNS servers are typically used as decoy servers because
they are publicly accessible from the Internet [3].

B. Topology Deception

Topology deception is a proactive defense to prevent the
topology probing that aims to discover bottleneck nodes
and links. It is achieved by deploying a virtual topology,
the structure of which differs from that of a physical topology
by manipulating a view of adversaries [10]-[12], [14], [15].
Below, we describe how they work from the perspective of
network operators:

1) Identifying potential bottlenecks. The network operator
first identifies which parts (e.g., nodes or links) of a network
should be hidden from adversaries. To find potential targets,
prior studies mostly leverage simple graph-based metrics such
as betweenness centrality (i.e., the number of shortest paths for
nodes [11]) or flow density (i.e., the number of network flows
for links [10], [12]). Those metrics reveal important nodes
and links that have significantly more connectivity than others
in a network. If certain nodes and links have high values,
the network operator determines them as potential bottlenecks.

2) Designing a virtual topology. The network operator
designs a virtual topology that can effectively hide the poten-
tial bottlenecks. Prior work commonly used a graph to model
the virtual topology. Its goal is to make a dissimilar vir-
tual topology from the original physical topology, preventing
adversaries from inferring the original graph structure. Hence,
most topology deception algorithms focus on the manipulation
of the graph structure (see §II-C for more details).

3) Deploying the virtual topology. Finally, the network oper-
ator deploys deception logics to network devices to implement
the virtual topology. For this, network devices (i.e., routers and
switches) should support packet header modifications [10] or
arbitrary packet generation [11] to display virtual nodes and
links in the tracing tools. In addition, network devices often
need to alter their deception logics when the physical topology
changes or a certain virtual topology is excessively exposed.
However, these approaches are limited to the legacy devices
because its control-plane intelligence highly depends on the
operator’s manual configurations. For this reason, previous
work leveraged programmable network devices (e.g., Open-
Flow [12], [15], P4 [10]) that can flexibly reroute or modify
probing packets according to deception logics. In addition,
NFV (network function virtualization) or software switches
(e.g., OpenvSwitch) have been used [14], [15] as well to
instantiate virtual networks in the data plane.

C. A Motivating Example and Challenges

Fig. 2a presents an example scenario, where the core links
D-E and E-I are vulnerable to LFAs because they are involved
in many network flows—high flow density. To discover those
bottlenecks, the adversary attempts to scan the target network

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

[=--> Probing Flow — Attack Flow = Affected Link -—-- Virtual Link |

(a) A physical topology that consists of 10 routers and traces of the
adversary’s probing/attack flows when no defense is deployed.

(b) The FR-based approach [12], [13] redirects probing packets to other
physical nodes and links (i.e., H, F).

(c) The ON-based approach [10], [11] adds virtual links denoted (i.e., dashed
lines) with by manipulating packet headers.

(d) The VN-based approach (i.e., [14], [15]) redirects probing flows to virtual
networks (i.e., clouds).

(e) BOTTLENET leverages all the techniques to create more complex virtual
topologies and is also able to reroute attack flows to mitigate LFAs.

Fig. 2. A motivating example to compare generated virtual topologies by
different approaches. The blue arrows indicate the physical paths of probing
flows. The red arrows denote the path of attack flows. The thick lines denote
affected links that can be flooded if the adversary mounts LFAs. The grey
nodes represent visible nodes to the adversary.

from the node A to K and J. Below, we show how three
different topology deception algorithms work:

o Flow rerouting (FR)-based approach [12], [13] focuses
on redirection of probing flows to other physical nodes
and links. This strategy forces an adversary to believe
that other nodes and links are bottlenecks. As shown
in Fig. 2b, the adversary’s flows are rerouted to the link
H-F and F-J; hence, she can be deceived that those links
are bottlenecks, not the links D-E and E-I.

o Overlay network (ON)-based approach [10], [11] aims at
creating virtual (overlay) links layered upon a physical
network by manipulating probing packets. For example,
in Fig. 2c, packet headers such as TTLs and IP addresses
are modified so that packets are not expired on some

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 12,2022 at 03:42:48 UTC from IEEE Xplore. Restrictions apply.

KIM et al.: BOTTLENET: HIDING NETWORK BOTTLENECKS USING SDN-BASED TOPOLOGY DECEPTION

nodes (e.g., H, D, I). This creates virtual links B-F, F-E,
and E-K (e.g., dashed lines).

o Virtual network (VN)-based approach [14], [15] aims to
add virtual nodes and links in the physical topology
to make the topology search space larger. In Fig. 2d,
the virtual networks (i.e., clouds) are deployed to the
nodes C and H. In addition, the virtual networks respond
with the IP addresses of physical nodes, such as K and J.
This approach can force the adversary to construct a
significantly different topology view.

With the in-depth analysis of prior studies, we observe that

they have the following limitations:

L1. Limited Bottleneck Metrics. Previous work [10]-
[12] only uses a single graph property of a network as a
metric to determine whether or not a link is a bottleneck.
However, we argue that it is not sufficient to find all possible
bottlenecks that may exist in practice. In Fig. 2a, whereas
the links D-E and E-I are determined to be bottlenecks due
to the high number of flows, the links H-F and F-J can be
vulnerable if they have low available bandwidth at the current
time. However, none of the previous works considered such
dynamic metrics. If the links H-F and F-J are included in
the virtual topology as shown in Fig. 2b, they expose attack
points to the adversary who can estimate link bandwidth using
measurement tools [26].

L2. Limited Complexity of Virtual Topologies. To
make virtual topologies secure, it should be guaranteed that
adversaries cannot easily infer physical topologies. However,
we observed that existing algorithms are limited in creating
secure topologies. For example, in Fig. 2b, possible graph
operations of the ON-based approach are to add virtual links
and remove existing physical nodes. However, they reduce
the possible number of nodes and links that adversaries will
discover, consequently leading to the creation of a limited
range of virtual topologies. From our theoretical analysis,
the maximum number of possible virtual topology instances
is 0(2”(”2_ 1)) in the ON-based approach, which is bound to
the number of physical nodes n. Furthermore, adversaries can
find commonly observed nodes and links from many topology
snapshots. On the other hand, the VN-based approach [14],
[15] did not consider the complex structure of virtual networks.

L3. Lack of Defense Against Blind LFAs. Existing FR-
and ON-based approaches did not control any production
traffic to protect bottleneck links. For example, in Fig. 2c, if an
adversary sends attack flows that are highly similar to benign
traffic from A to K, they pass through the bottleneck links
D-E, E-I. Unfortunately, if the adversary knows this routing
policy, they can mount blind LFAs even though they do not
know exact topology information. For instance, they can send
a large volume of attack flows aimed to target virtual links
B-F and F-E, and then the underlying core links B-D, D-E,
and E-I are flooded. Whereas the VN-based approach focused
on redirecting probing flows to isolated network space, none
of the previous work utilized VNs to mitigate attack flows.

D. Our Approach
BOTTLENET addresses the limitations with three high-level
approaches. To address L1, BOTTLENET provides richer

3141

metrics from both aspects of bottlenecks: topological and
performance metrics. For example, if they want to consider
both the number of network flows and available link bandwidth
as criteria, BOTTLENET then makes an optimized decision to
cover all potential bottleneck nodes and links that display a
high possibility of being targets. To address L2, BOTTLENET
combines existing deception algorithms to make more com-
plex virtual topologies with proactive and reactive ways: we
proactively analyze a target network and generate complex
virtual networks, the structure of which is scale-free [27], and
we reactively enforce rules that dynamically manipulate routes
of probing packets and its headers. For example, in Fig. 2e,
BOTTLENET redirects probing packets to VNs so as to hide
the intermediate links D-E and E-I. In addition, BOTTLENET
modifies packet headers to make overlay links from node B
to the VNs. As a result, the complexity of those networks
becomes larger than the prior VN-based approaches [14], [15].
To address L3, inspired from the traditional virtual honeypot
concept [28], BOTTLENET quarantines flows to virtual net-
works when their volumes are likely to congest bottleneck
links. It consequently minimizes the impact of attack flows
when adversaries mount blind LFAs aimed to flood virtual
nodes or links even under the obfuscation.

III. RELATED WORK

LFAs. LFAs have recently garnered significant attention as
a new threat to network robustness. In contrast to traditional
DDoS attacks, LFAs target intermediate core links to cause
significant damages to a large number of victims (see §II-A for
more details). The Coremelt attack [4] first demonstrated that
it is possible to cause congestion on core links using pair-wise
bot-to-bot traffic. The Crossfire attack [3] showed that distrib-
uted bots can use publicly accessible servers to make a number
of indistinguishable attack flows on bottleneck links. The key
insight is that such network bottlenecks actually exist at both
intra- and inter-domain network topology regardless of scales,
which has been demonstrated by Kang and Gligor [7].

There are multiple defending approaches to mitigate LFAs,
and we compared our solutions with them as follows:

Reactive Traffic Engineering. Detecting LFAs is a chal-
lenging problem considering that an adversary utilizes legiti-
mate traffic when attacking network bottlenecks. To catch the
hidden behavior of LFA attackers, researchers have proposed
a variety of reactive approaches. They assume that LFA bots
send constant-rate traffic to maximize attack effects in a long
time period and may not comply with instructions of upstream
ASs. Paying attention to the fact, SPIFFY [13] proposed
an SDN-based traffic engineering technique that temporar-
ily expands end-to-end bandwidth. Codef [29] proposed an
inter-AS collaboration approach that reroutes traffic on the
request of a peer router’s request. In the circumstance of those
rerouting instructions, bots may not correctly adjust their flow
rates/paths, which is evidence of detection. However, reactive
countermeasures are limited in that they do not prevent LFA
attackers from discovering target bottlenecks.

Topology Deception. Table I shows a comparison that
systematically analyzes differences between the existing topol-
ogy deception and BOTTLENET for supported metrics and

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 12,2022 at 03:42:48 UTC from IEEE Xplore. Restrictions apply.

3142

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

TABLE I
COMPARISON OF BOTTLENET AND PREVIOUS WORK FOR TOPOLOGY DECEPTION

Purpose Static Metrics Dynamic Metrics Deception Algorithms
[11] Important node hiding BC X ON
NetHide [10] Usable virtual topology construction FD b 4 ON
RDS [15] Virtual networks with dynamic features X LL, ALB VN
[14] Moving target defense framework b 4 b 4 VN
LinkBait [12] Exposure of bait links FD X FR
SPIFFY [13] Emulation of fake bandwidth X X FR

BOTTLENET Diverse metrics & Complex topologies

BC, CC, DC, MC+

ATL, CBR, ALB, LL+ FR, ON, VN

deception algorithms (For a comprehensive list of metrics,
readers should refer to §V-A.). Here, we briefly review prior
studies according to the aforementioned categories (§1I-C):

FR-based approach. LinkBait [12] reroutes flows into other
physical links (namely, bait links) that are fake bottleneck
links to conceal high flow density links. SPIFFY [13] can
also be seen as a topology deception because it emulates
fake expanded bandwidth to remove bandwidth bottlenecks
from an adversary’s view. Whereas the FR-based approach is
straightforward in achieving the goal with the help of traffic
engineering, they consequently make other physical nodes and
links appear as target bottlenecks.

ON-based approach. Trassare et al. [11] showed that it
is possible to build a fake overlay by manipulating tracer-
oute responses to hide high betweenness centrality nodes.
NetHide [10] further advanced the ON-based approach by
proposing an optimization algorithm that computes a secure
and useful virtual topology to hide high flow density! links
while maximizing the utility of tracing tools. However,
the ON-based approaches are limited in that they can only
build a simple virtual topology due to the restricted possible
graph operations upon a physical topology.

VN-based approach. RDS (Reconnaissance Deception
System) [15] designed a virtual network-based deception sys-
tem that imitates the performance characteristics of a real
network by emulating a virtual link latency and bandwidth.
Aydeger et al. [14] proposed an SDN/NFV moving target
defense system that constructs virtual networks using NFV
and orchestrates suspicious flows using SDN. Although their
approach is similar to ours, they did not consider the complex
topology structure at all.

In summary, none of the existing work considered a com-
plex graph structure and multiple types of metrics, and this
limitation leads to the design of insecure virtual topologies.

IV. BOTTLENET OVERVIEW

This section presents our threat model and terminologies,
and introduces an overview of the BOTTLENET architecture.

A. Problem Scope

Threat Model. We assume that an adversary seeks to
discover network bottlenecks through topology probing for the
purpose of executing LFAs on targeted nodes and links [3],
[4]. The bottlenecks include important routers and links that
are involved in critical network connectivity that can be
defined by a variety of factors such as network flows, routing

INote that the flow density is a subset of our betweenness centrality.

paths, and available bandwidth. As noted earlier, a com-
mon technique used to find routing bottlenecks is to gather
topology information about network flows and routing paths
using topology probing tools such as traceroute [25],
which has been popularly used for network debugging [30]
or large-scale topology measurements [31]. Here, we do not
consider inaccuracy issues of traceroute, due to IP aliasing
or load balancing [31], [32], because the objective of topol-
ogy probing is to obtain an approximate topology view for
identifying targets [3]. We also assume that the adversary
can perform topology probing from both inside and outside
a network. Finally, we assume that the adversary can measure
end-to-end bandwidth using bandwidth probing tools (e.g.,
iPerf [26], PathNeck [16]), meaning that they can
approximately discover bandwidth-constrained links.

Deployment Model. Our target network is a WAN (wide
area network) because an adversary performs LFAs typically
over a large geographical area [3], [4]. We envision that all
switches in the target network are OpenFlow-enabled devices
that allow a network operator to directly control and monitor
all visible flows (e.g., Google B4 [33]). The operator, who is
in charge of a single ISP (internet service provider), may run
a (logically) centralized SDN controller to control OpenFlow
switches with a number of SDN applications. BOTTLENET
can be deployed as a security application upon the con-
troller especially built for preventing bottlenecks from being
exposed from adversarial topology scanning because many
network operators employ similar solutions to protect their
networks (e.g., honeypots [28], network tarpits [34]). Note
that BOTTLENET needs periodic network monitoring to obtain
global visibility for current network topologies and statistics.
Although this approach may raise concerns regarding scalabil-
ity due to the massive number of collected data, state-of-the-
art SDN controllers are designed as distributed platforms that
provide high performance, enabling built-in support for moni-
toring large-scale networks [35], [36]. Finally, we envision that
the operator provides deployable host machines (i.e., available
nodes) within their networks to deploy virtual networks as a
form of VMs or containers (e.g., Planetlab [37]).

B. Notations

In this study, we depict a physical topology by a graph
G = (V, E), where V represents the set of physical routers
(or switches), and E represents the set of physical links
between the routers. We assume that a network operator
wants to protect a set of bottleneck nodes denoted by Vj
(or bottlenecks links denoted by Ej). They wish to hide V}
from an adversary’s topology probing to make the prober

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 12,2022 at 03:42:48 UTC from IEEE Xplore. Restrictions apply.

KIM et al.: BOTTLENET: HIDING NETWORK BOTTLENECKS USING SDN-BASED TOPOLOGY DECEPTION

%@ == Bottleneck link
. @ Bottleneck node
— —@— @ Deployment node
Virtual Topology O Virtual node
BottleNet |
Topology Analyzer | |Deployment Manager
Virtual Network
% <-@)—~| Feature Generator | Generator
Network Bottleneck Finder | Rule Generator |]
operator
| Virtual Topology Probe State
L _@" Modeler Tracker
Configurations

i0) [®

| SDN Controller

— (o)

= Host Agent
= Router . _Deployment _- :
End host == Node Deployment
Router Host
Fig. 3. BOTTLENET system overview.

believe that V}, are not bottlenecks in the physical topology G.
Deployment nodes are denoted by V;, which are selected
from available nodes V,, supported by the operator. A virtual
network is denoted by G, that consists of virtual nodes V, and
links E,. Formally, we state that the goal of generating and
deploying the virtual network G, is to reduce/hide bottleneck
metrics of bottleneck nodes V}, (or bottleneck links Ej) and to
increase the metrics of virtual nodes V, (or virtual links E,).

C. System Workflow

Fig. 3 illustrates BOTTLENET’s main components and the
overall workflow that operates with the following sequence:

Topology Analyzer. is responsible for analyzing a target
network topology and finding potential bottlenecks. @ The
metric generator periodically collects a current topology snap-
shot and network statistics for routers and links from an
SDN controller. @ Based on the data, it calculates static
and dynamic metrics, each of which denotes the topological
and performance properties of network bottlenecks, respec-
tively. @ The network operator then gives BOTTLENET the
configuration parameters: the number of bottlenecks x that
they want to protect, the preferred bottleneck metric types M,
the available nodes V, for deploying virtual networks, and
the distance threshold 7 that denotes allowed hop distances
from deployment nodes to bottlenecks. @ The bottleneck finder
locates bottlenecks by solving an ILP optimization, and the
virtual topology modeler designs the virtual topology that
specifies the location of deployment nodes and the neces-
sary number of virtual nodes and links to hide the target
bottlenecks.

Deployment Manager. aims to deploy the virtual topology
into a physical network by enforcing necessary rules and
network configurations. ® The virtual network generator
instantiates virtual networks (modeled on the virtual topology)
to virtual switches and links with concrete network config-
urations and deploys them to the deployment hosts. ® The
rule generator generates detection and redirection rules that

3143

TABLE 11
SUPPORTED BOTTLENECK METRICS IN BOTTLENET

Type
Node Link
v

Category Metric (abbr.)

Betweenness Centrality (BC)
Closeness Centrality (CC)

Mincut Centrality (MC)

Degree Centrality (DC)

Aggregate Traffic Load (ATL)
Consumed Bandwidth Ratio (CBR)
Available Link Bandwidth (ALB)
Link Latency (LL)

Static

v
v
v
v
v

Dynamic

ENENEN

monitor probing packets and reroutes/modifies them when
deception is required. When potential probing packets are
detected, it first reroutes the packets to the deployed virtual
networks and reports them to the probe state tracker module,
which then manages states for the subsequent behavior of
probers. If probers subsequently send suspicious traffic (e.g.,
long-lived TCP flows with a constant rate, such as the Crossfire
attack [3]) to virtual networks, the rule generator blocks or
quarantines the flows. The probe state tracker also manages
known IP addresses of benign probers to allow benign network
debugging and topology measurements.

Host Agent. is a lightweight module running on the deploy-
ment host attached to the designated deployment node so
as to deploy virtual networks. Instructed by the deployment
manager with a private control channel, the host agent then
realizes the virtual topology with virtual switches that produce
probing responses and simulate arbitrary dynamic network
properties to hinder the inference of real topologies.

V. SYSTEM COMPONENTS

This section elaborates on metric definition, deception algo-
rithms, and deployment workflows of virtual networks.

A. Bottleneck Metric Definition

Below, we summarize bottleneck metrics currently sup-
ported by BOTTLENET (see Table II). In what follows,
we denote a single node by u, and denote a direct link from
node u to v by (u,v).

1) Static Metrics: One aspect we consider when designing
metrics is that bottlenecks result from a fundamental structure
of network topologies. This consideration motivates the use of
the following 4 graph metrics:

Betweenness Centrality (BC). It denotes the number of
times a node or link acts as a bridge along the shortest
paths between two nodes [38]. If a node or link is included
in many routing paths, we consider that they are likely to
be bottlenecks. Because network operators typically adopt
policy-based routing, we use the modified version proposed
by Schuchard et al. [19] who replaced the shortest paths to
policy-based routing paths. We define the modified BC for a
node u as BC(u) = >4, zev %, where pathy, is the
number of routing paths between s and ¢, and pathg (1) is
the number of those paths that contain the node u.

Closeness Centrality (CC). It indicates the average hop
distances of a target node from others. Kang er al. showed

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 12,2022 at 03:42:48 UTC from IEEE Xplore. Restrictions apply.

3144

that routing bottlenecks are commonly discovered around the
midpoint hops of routing paths from the large-scale traceroute
measurement [7]. Based on this fact, we conjecture that the
high closeness centrality nodes are likely to be adjacent to
bottleneck nodes and links. The closeness centrality of a node

u is defined with CC(u) = W where d(u, v) is the

geodesic distance between node u and v.

Mincut Centrality (MC). The LFA attackers may seek to
minimize the number of target links while cutting as many
connections as possible [3]. In this regard, attacking link cuts is
one of the efficient ways to choose target links minimally [5].
To consider this approach, we design a new centrality metric
that captures how often a link is involved in the s-t mincut,
which is a minimum set of cuts from source s to destination
t, for all pairs of nodes. We define the mincut centrality of a
link (u,v) with MC(u,v) = > .y Zt#sev mincuts (1, v),
where mincuty (1, v) is the number of times a link (u, v) is
included in s- mincut between all pairs of nodes.

Degree Centrality (DC). The degree of a node determines
the criticality of a node failure in the network, and it has been
the most popular indicator used in prior studies for network
robustness problems [2], [6], [18]. If a node has a high degree,
it indicates that the node has many neighbor nodes; hence the
failure of the node can severely affect a significant number
of network connections. The degree centrality is defined with
DC(u) = %, where deg(u) is the degree of the node
u. Here, we compute a normalized degree of a node u by
dividing it by the sum of all node degrees.

2) Dynamic Metrics: BOTTLENET leverages the capability
of OpenFlow protocols [39] to extract the following 4 dynamic
metrics that locate bandwidth bottlenecks in SDN networks:

Aggregate Traffic Load (ATL). Tt indicates the sum of
the overall incoming traffic load rate that a node u
receives. To extract this metric, we leverage the Aggre-
gate_Flow_Statistics OpenFlow message. It retrieves the
aggregate statistics for active flow entries from an OpenFlow
switch. Specifically, we refer to the byte_count field that
represents the accumulative number of byte counts for alive
network flows. BOTTLENET periodically queries it to all
switches every ¢ seconds and computes a rate of the change
of aggregate byte counts.

Consumed Bandwidth Ratio (CBR). It represents the utilized
bandwidth ratio of a link by considering the current bitrate
of active flows. It can be computed using the OpenFlow
Port_Statistics message that retrieves statistical information
of all ports from a switch. In particular, we leverage the
tx_bytes field that denotes the number of transmitted bytes and
duration_sec that indicates the elapsed time the port has been
activated. With these two fields, we can compute 7'X,, ,(f),
which is the number of transmitted bytes from node u to v
per time ¢. Finally, we define the consumed bandwidth ratio
of a link (u,v) as CBR(u,v) = (TX”’”(m?;Tt:(”’”(”))'S, where
to and #; are the previous and current timestamp, respectively.

Available Link Bandwidth (ALB). Tt displays how much a
link can receive further flows based on the link capacity and
used bit rate. It is the most important dynamic metric for
determining whether or not a link is a bandwidth bottleneck.

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

¢

start

end

Packet Out
(T ctrl,u)

Packet In
(Tv,ctrl)

Packet

(T(wv))

Fig. 4. Measuring a link latency LL(u,v) of a link (u, v).

To obtain this information, we subtract CBR from a predefined
link capacity, and then we can obtain the available link band-
width for a link (u, v) as: ALB(u,v) = C(u,v)—CBR(u,v),
where C(u,v) denotes the capacity of the link (u, v).

Link Latency (LL). It measures the latency of a link between
two switches to know whether the link experiences congestion.
Because the OpenFlow protocol does not support such a
metric, we leverage the Skowyra et al.” latency estimation
method [40] as illustrated in Fig. 4. First, the controller
denoted by crrl generates an arbitrary measurement packet
and instructs the switch u to send it to switch » with a
Packet_Out message. The switch v then receives the packet
and sends it to the controller with Packet_In. The controller
then records the time #,,; that indicates the time of sending
the Packet_Out and t,,, that represents the time of receiving
the Packet_In. If we know T, and T, o, that denotes
propagation delays of a control channel among ctrl, u, and
v, we can estimate the link latency from u to » as follows:
LL(u,0) = tena — tstart — Tetrt,u + Toetrl)-

B. Topology Analyzer

The goal of the topology analyzer is to find potential
bottlenecks and generate a secure virtual topology that cannot
be easily inferred by an adversary. We now present an opti-
mization method that chooses the most vulnerable bottleneck
nodes and links based on an operator’s inputs and propose
graph-based algorithms that design complex virtual topologies.

1) Optimized Bottleneck Node Selection: BOTTLENET aims
to find x number of bottlenecks based on the input metric
types M preferred by a network operator. The key question
is how we choose the most vulnerable bottleneck nodes
and links across heterogeneous types of metrics. To address
this issue, we adopt MCDA (multi-criteria decision analysis),
which is commonly used to choose an optimized goal across
multiple criteria. To employ MCDA, we first need to vectorize
the computed metric set and preprocess heterogenous types
because it is possible that each metric vector has different
dimensions.

For example, suppose that we are given M = {my, my,
...,m;}, a set of computed metric vectors for r number
of required metric types chosen by an operator. Consider a
specific case where m; is the BC for all nodes, and m> is
the ALB for all links. The two metrics have different vector
dimensions; m1’s length is the number of nodes, whereas m»’s
length is the number of links. To equalize those heterogeneous
dimensions, we relax the dimension of link metric vectors
into the node dimension; for a metric value of a link (u,v),
we aggregate it to the source node u. For example, in Fig. 2a,
if ALB of the link B-D is 0.7 and B-H is 0.9. Then, we assign
1.6 to the source node B by aggregating those two values.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 12,2022 at 03:42:48 UTC from IEEE Xplore. Restrictions apply.

KIM et al.: BOTTLENET: HIDING NETWORK BOTTLENECKS USING SDN-BASED TOPOLOGY DECEPTION

miy - miy

T B
Mul - My
where m;; denotes a metric value of i-th node for j-th
metric type, and n denotes the number of nodes. To cast this
problem into ILP (integer linear programming) formulation,
we calculate a node weight w; from the matrix:

Now, we build a decision matrix D =

2o mi)
2ok zl}=1“j i

that denotes the weighted sum of all selected metrics for the
i-th node. Note that we leave «; that is a biased weight of
a metric type j, and it can be customized by the operator’s
preferences. We now formulate the bottleneck node selection
problem as ILP:

Wi

max. z w(u)xy

ueV
s.t. qu <k (CD
ueV
x, €10,1,ueV (C2)

The objective function is to find ¥ nodes that maximize the
sum of metric values. The constraint (C1) ensures that we
select ¥ nodes among all physical nodes V. In the constraint
(C2), the decision variable x, indicates whether node u is a
bottleneck node or not. As a result, we obtain a set V}, that
consists of xk bottleneck nodes vp,.

2) Deployment Node Selection: Based on the bottleneck
node set Vj, the next step is to select deployment nodes V,
where virtual networks are deployed. Recall that BOTTLENET
receives available nodes denoted by V,, and distance threshold
7 as inputs from a network operator. To choose the best-fit
deployment nodes among them, we consider the following
constraints: In terms of cost-effectiveness, the operator may
want to minimally use deployment nodes to save resources.
On the other hand, the operator wants to deploy virtual
networks close to bottleneck nodes as much as possible to
maximize the deception effects. This problem can be defined
as a vertex cover problem that chooses a minimum node cover
set that is adjacent to all links in a graph. However, this has
been referred to as NP-hard, and it is possible that we cannot
select an adjacent node to bottlenecks in cases where there are
no best-fit available nodes from the input V.

We address the problem by presenting the approximation
algorithm. The key idea behind this approach is to choose
a minimum node set that is placed in a position close to
bottleneck nodes in terms of hop distances within the distance
threshold 7. Consider the deployment node selection example
shown in Fig. 5a that analyzes the topology dataset of an
Abilene network [41]. We assume that a network operator
wants to hide k = 2 bottleneck nodes based on the static
metric BC. Then, the selected bottleneck nodes are nodes D
and E because they display high metric values. There are three
available nodes for deployment: nodes B, I, and K.

BOTTLENET first calculates distance scores according to
hop distances from each available node to each bottleneck
node and greedily selects the closest node in turn. For example,

3145

node B is placed in the closest locations to both nodes E and D,
leading to assigning high distance scores. If the selected
node is located within the distance threshold 7, we mark
that the node can cover the bottleneck nodes. Suppose that
the threshold distance r = 2; then, we need not choose
an additional deployment node because node B can cover
both E and D.

Algorithm 1 Minimum Deployment Node Set Selection
Input: Physical topology G = (V, E),
Set of bottleneck nodes Vj,
Set of available nodes V,,
Distance threshold
Output: Set of deployment nodes Vy
1: procedure GETDEPLOYMENTNODES(G, Vj)

2: Vi< 0
3 for v, € V, where v, ¢ V5 do
>0, €Vpd (vn,0p)
4 d(vg) < =2 A
5 while V), # ¢ do
6: vZ”"’ <« node with minimum d(v,) from V,
7 Vieighbor < DistanceToNeighbor 0", ¢
8 Veovered < Vueighvor N Vb
9: if Veopereda 7 ¥ then
10: append v;'”” ez
11 Vi < Vb/vcovered

12: return V,

Algorithm 1 illustrates the pseudo code of the algorithm.
It first computes average distances from each available node
v, to all bottleneck nodes (lines 2 to 4). Then, it chooses an
available node vt’l'”” that has the minimum average distance,
and investigates whether 7-neighbor nodes Vieignpor, Which
denotes the set of nodes located within the distance threshold
7 in turn (lines 5 to 8). If any bottleneck node is adjacent to
vZ”"’, the algorithm then chooses it as a deployment node that
covers the adjacent bottleneck nodes denoted by V,ypered, and
removes the covered ones from the set V}, (lines 9 to 11). The
iteration is repeated until all bottleneck nodes are covered.

3) Virtual Topology Generation: Once locations are deter-
mined, the virtual topology modeler builds virtual topologies
that can effectively hide the bottleneck nodes by adding virtual
networks to deployment nodes. The problem is what topology
types should we use and how many virtual nodes and links
are required.

We observe that the existence of network bottlenecks pri-
marily originates from the fundamental topological nature of
the communication networks—known as scale-free networks.
It is one of a representative theory to illustrate network struc-
ture in the real world [27]. In scale-free networks, node degree
distributions are known to follow the power law, meaning that
a few nodes have most of the links; the more a node has links,
the more it can be a bottleneck because the node becomes a
hub node between others, which leads to a significant increase
of degree on a few nodes. Although the existence of the
scale-free networks has been debated by researchers since its
emergence [42], we focus on the fact that this structure allows
us to make biased distributions of link densities, which can

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 12,2022 at 03:42:48 UTC from IEEE Xplore. Restrictions apply.

3146

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

(a) Initial state.

(b) After first step.
Fig. 5.

(c) After 4th steps. (d) After 7th steps.

A working example of the algorithms in Abilene. The red nodes denote target bottleneck nodes that have the highest metrics when x = 2, the blue

node denotes a chosen deployment node among the available nodes (cyan colors) when 7 = 2. The numbers indicate normalized values of BC. The grey

nodes represent virtual nodes.

synthesize arbitrary bottlenecks. Those particular ones become
attractive targets to the LFA attackers.

From the aspect of a graph feature, the scale-free network
tends to create bottleneck nodes and links that have high
centrality values inside its structure. For this reason, attaching
it to the deployment nodes (remotely placed from targets)
would reduce the static metrics of physical nodes and links
relatively (see Fig. 5 for illustrations). Based on this approach,
we design a virtual topology generation algorithm by leverag-
ing a Barabasi-Albert (BA) model [43] that generates random
scale-free networks. The BA model incrementally adds a new
node to a graph and connects a link based on the random node
selection with a certain probability. Here, the probability is
computed as proportional to the number of links that existing
nodes already have. Inspired by this strategy, our algorithm
pursues to add a new link to nodes that have higher bottleneck
metrics when a new node is added.

Algorithm 2 takes as inputs the physical topology G, a target
bottleneck node v;, a target deployment node vy, and a node
weight w(v, G), which denotes the aggregated bottleneck
metric values (computed in §V-B) of the node v in the graph
G. The purpose of the algorithm is to generate virtual networks
(subgraph) G, that have at least one new bottleneck node
inside its structure. It first adds an initial virtual node vg to
the empty set G, and a link from vy to vo (lines 2 to 4).
For each iteration, it adds a new virtual node v/ to G,
and a virtual link to an existing virtual node of G, with a
biased node selection probability p(v), which is proportional
to the node weight w that the virtual node v, already has
(lines 5 to 9). Thus, the virtual node that has high weight
is more likely to have new links. The algorithm repeats the
addition and linking of a new node, until V, has at least one
virtual node, the metric of which is greater than the target
bottleneck node v (lines 10 to 13).

We illustrate the algorithm with a working example depicted
in Fig. 5. As noted earlier, the target bottleneck nodes are E
and D; therefore, node B is selected as a deployment node.
BOTTLENET then begins an iteration by attaching initial two
virtual nodes BO and B1 to node B (Fig. 5b). When new virtual
nodes are added, the algorithm recomputes a target metric and
selection probability of existing virtual nodes for connecting a
new link. During four iterations, the algorithm incrementally
appends new virtual nodes B2, B3, and B4. Here, B2 and
B3 are connected to B1, and B4 is connected to BO as a result
of the biased random node selection (Fig. 5c). After three more
iterations, nodes B5, B6, and B7 are added, and B6 and B7 are
linked to B1 and BO, respectively (Fig. 5d). The algorithm is

Algorithm 2 Virtual Topology Generation
Input: Physical topology G = (V, E),

Target bottleneck node vy,

Target deployment node vy,

Node weight w(v, G) for all nodes v in topology G,
Output: Virtual network G,
1: procedure GENERATEVIRTUALTOPOLOGY(G, vp, 04, W)
2 G, <0
3 add an initial virtual node vy — G,
4 add a virtual link (vgq,v9) = G,
5: do
6
7
8
9

add a new virtual node v — G,

calculate w(v,, G,), Yv, € G,
compute p(v,) < %,Vuv e G,

v, < select a node v, with the prob. p(v,), Vo, €

Gy
10: add a virtual link (v,e,0,) = G,
11: H <~ GUG,
12: recalculate w(v, H),Yo € H

13: while max w(v, H) < w(vp, H),Vo € H
14: return G,

terminated when the target metric of the virtual node BO is
greater than that of the nodes E and D.

C. Deployment Manager

The goal of the deployment manager is to instantiate virtual
networks on a physical network based on the generated
topology model. This task involves diverse actions such as
configuring rules for detecting and modifying TTL values of
probing packets, and installing virtual switches on a target
deployment node. Here, we present how to realize these
techniques using SDN and virtual switches.

1) Virtual Network Deployment: We consider several
requirements to deceive an adversary into thinking that virtual
topologies are real: First, we should be able to dynamically
activate or deactivate virtual networks by instructions of
network operators. The reason is that BOTTLENET needs to
periodically re-generate virtual topologies to be secure from
the adversary’s topology inference or when bottleneck loca-
tions are changed. Second, virtual networks should emulate
realistic network parameters such as IP addresses and perfor-
mance metrics. For example, if we use private IP addresses,
an adversary will not believe the topology snapshot; thus,
we need to assign public IP addresses to virtual networks

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 12,2022 at 03:42:48 UTC from IEEE Xplore. Restrictions apply.

KIM et al.: BOTTLENET: HIDING NETWORK BOTTLENECKS USING SDN-BASED TOPOLOGY DECEPTION

. . Topology, IP Addresses, | yirtual Network
Configurations| || atency, Bandwidtf]w B
SDN Controller <

Place Switch
‘OF Manager‘ ‘BottIeNet‘ ------- Host Agent
S ‘\
S *\ Probing/Attack
v s, Flows dnt
E—

' Deployment Host

Bottleneck Node Deployment Node
-=-=- BottleNet Control Channel === OpenFlow Control Channel

Fig. 6. A workflow of deploying virtual networks.

(refer to §VII to see how we address this issue). Furthermore,
because virtual switches are emulated on a local network
stack in a deployment host, the performance metrics between
virtual nodes can be observed as infeasible values (e.g., too
many low RTTs) when suitable constraints are not applied.
Finally, received probing packets by virtual networks should
be monitored by BOTTLENET so that we can track probers’
subsequent behavior.

BOTTLENET implements virtual networks using network
virtualization techniques [23], [44] that enable the instantiation
of virtual switches on general-purpose machines. Fig. 6 shows
the workflow of deploying virtual networks. When receiv-
ing instructions from BOTTLENET, the host agent composes
virtual networks, the link relationship of which follows the
modeled virtual topologies. To redirect probing packets into
virtual networks, one of the virtual switches is connected to the
deployment node through an interface of a host machine (we
call it an entry node.). To avoid the usage of dedicated control
channels for virtual networks, all virtual switches use in-band
OpenFlow channels where all control packets are transmitted
into the assigned interface.

To enable dynamic control of virtual networks, we design
a customized control channel between BOTTLENET and the
host agent. The control channel carries an encrypted message
that contains configuration information that specifies a vir-
tual topology, allocated IP addresses, and performance con-
straints (e.g., link latencies and bandwidth). Here, a network
operator can specify their preferences for the performance
configurations, but BOTTLENET essentially utilizes the
dynamic metrics as reference values to emulate real envi-
ronments. One limitation is that it is difficult to imple-
ment the ultra-high bandwidth used in core links and nodes
(e.g., 40Gbps, 100Gbps) in commodity machines. However,
adversaries may not measure such large bandwidth precisely
due to various QoS constraints in the wild (e.g., TCP fair-share
rates [13]).

2) Detection and Redirection Rule Enforcement: BOT-
TLENET generates rules that detect potential probing pack-
ets and reroute them to virtual networks. We prioritize
traceroute-type packets (i.e., low TTLs) as the most impor-
tant criterion regarding whether or not a flow sender is a
suspicious prober. To hide bottlenecks from an adversary,
we need to avoid the case when traceroute-type packets expire
on bottleneck nodes because this triggers switches to reply
with ICMP Time_Exceeded packets. A strawman solution is
to detect all TTL = 1 packets. However, if an adversary sends

3147

Redirection Policy Table

Flow Physical| Virtual | Expire
[SrclP=10.0.1/24, DstlP=10.0.2/24 D I V4 1 hour
Leaf ?odes

Entry node

Switch Flow Table
Match Fields Actions
TTL=3, SrclP=10.0.1/24, DstIP=10.0.2/24|SetDst|P=V4, OutPort=1

Fig. 7. An example of rule enforcement. A is an edge node that receives
the external probing packets in the network boundary, and C is the bottleneck
node that needs to be hidden. The probing packets which TTL=3 are likely
to expire on C, so they are redirected to D and arrive at V4 in the end.

a TTL>1 packet that is crafted to become TTL = 1 on the
bottleneck nodes, it will bypass the TTL = 1 detection rule.

A key benefit of OpenFlow is to enable monitoring such
types of packets with fine-grained match fields; if incoming
packets detected on edge nodes have a certain TTL value
that is matched with the hop distance to bottleneck nodes,
it will be likely to expire on bottleneck nodes. To implement
this logic, we precompute routing paths from each edge node
to bottleneck nodes based on current forwarding behavior.
We then generate the following OpenFlow match fields: TTL as
the length of the path, and SrcIP from the source traffic class
that sends probing packets, and DstIP from the destination
traffic class that passes by bottleneck nodes. If a packet header
is matched with those fields, BOTTLENET considers it as a
potential probing packet. Note that TTL is not currently spec-
ified as a standard OpenFlow match field, but we found that
many data-plane extensions (e.g., Open vSwitch [45]) support
the TTL field to complement the limited match capability.

When a potential probing packet is detected, BOTTLENET
decides its redirected destination as shown in Fig. 7. We first
need to choose physical destinations of a probing packet
that is among the deployment nodes. Here, we preferentially
select the nearest deployment node from detected locations
by computing the shortest path because we aim to minimize
exposure of physical nodes and links. We then decide virtual
destinations of a probing packet among the virtual nodes.
To maximize deception effects, we want to make adversaries
discover as many virtual nodes as possible. For this pur-
pose, we greedily choose the farthest virtual node from the
entry node: Using the virtual network graph, we compute a
minimum spanning tree rooted at the entry node and find a
set of leaf nodes located in the bound of the tree. We then
periodically choose a different virtual destination among the
set in a round-robin manner so that all leaf nodes are fairly
discovered. Finally, we install flow rules for which the match
fields are the same as the detected probing packet headers so
that subsequent probing flow can be redirected to the chosen
virtual nodes.

3) Handling Direct Topology Probing: BOTTLENET also
needs to handle direct probing packets that may reveal the
identity of virtual switches. For example, traceroute termi-
nates its stream of probing packets when receiving ICMP

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 12,2022 at 03:42:48 UTC from IEEE Xplore. Restrictions apply.

3148

Virtual Network Address Table

@ @ Virtual Switch | Interface I[P Address

@ VO 1 10.1.1.1

@ VO 2 10.1.2.1

0 @ @ E V1 1 10.1.3.1

Adversary’s View i Virtual Network (10.1/16)

& Adversary [UDP[SrclP=Bot| DstiP=C]|
= = '

[
-

[ICMP [Port Unreachable[SrclP=C| DstlP=Bot |

Fig. 8. An example of handling direct topology probing.
Port_Unreachable messages, indicating that a port in the target
host is not opened (in case of UDP). This response reveals the
IP address of a virtual switch (e.g., node V4 in Fig. 8) as a final
destination, which is unexpected by adversaries. To address
this issue, BOTTLENET instructs the leaf nodes of the virtual
network to produce a fake direct response for which the source
IP address is the one a sender intended (e.g., node C in Fig. 8).
As a result, the adversary is deceived that the target node is
located in an adjacent location of the leaf nodes, leading to
the construction of completely different topologies from the
adversary’s perspective.

4) Mitigating Blind LFAs: An adversary can conduct blind
LFAs aimed to flood arbitrary links despite not being aware of
the exact path information. This is possible because we do not
control the routing path of non-probing flows initially; hence,
attack flows can pass through bottleneck links (e.g., link A—C
in Fig. 9). For this, deployed virtual networks can also be
utilized for mitigating the LFAs, such as a traffic scrubbing
center that temporarily reroutes attack flows for the purpose
of reducing target load. The traffic scrubbing center has been
employed as a primary DDoS defense measure by many
popular websites (e.g., CloudFlare [46]); thus, using virtual
networks as traffic scrubbing services may encourage network
operators to deploy BOTTLENET to protect their networks
from not only topology probing but also actual flooding traffic.

The challenge is that it is impossible to differentiate attack
flows from benign ones due to the low-rate (indistinguishable)
property of LFAs [3]. We address this problem by selectively
rerouting all flows in a probabilistic manner: Arbitrary portions
of all flows are routed to virtual networks temporarily when a
link experiences congestion. For this, BOTTLENET leverages
the select action in the OpenFlow group table feature [39].
The select action enables an OpenFlow switch to choose
one of multiple actions in one bucket. Each action has an
assigned weight that denotes the probability of selecting the
action, determined by hashing an incoming packet header.

Fig. 9 describes how BOTTLENET mitigates LFAs with
the above solution. Consider that the link A-C is likely to
experience congestion when the adversary sends attack flows
to a decoy server. If detected, BOTTLENET installs a group
entry to a suitable node (e.g., A) so that 20% of flows are
redirected to the virtual network by assigning the weight
20, whereas the remaining 80% flows are forwarded to the

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

OpenFlow Group Table
Bucket {weightzso}[weightﬁo”
(select)lFwdto C JIFwd to VN
I Decoy
@ Server

Attack
Link A-C!

Fig. 9. An example of mitigating LFAs using a virtual network.

actual destination. The redirected flows are forwarded from
the virtual network to the target decoy server after the flows
visit the virtual nodes. This strategy alleviates the congestion
of the link A-C, while preventing flows from being flooded
using the imposed link constraints to the virtual network (see
§V-C.1). We refer readers to §VI-B to see how this solution
is effective in reducing the dynamic metrics of bottlenecks.

VI. EVALUATION

In this section, we evaluate the effectiveness of BOT-
TLENET’s algorithms and conduct a performance benchmark
on large-scale network topologies.

Implementation and Environments. We implemented a
BOTTLENET prototype as SDN applications with 1000+
lines of code in Python upon Ryu [24], one of the popular
SDN controllers. To collect dynamic metrics, we modified
Ryu’s core module ryu.topology.switches, which is
responsible for collecting topology information from the data
plane. We use PulLp [47] to model and solve the ILP opti-
mization problem. We leverage Open vSwitch [23], which
enables modeled virtual nodes to be rapidly instantiated into
virtual switches on general-purpose machines. To implement
virtual host nodes in virtual networks, we utilize Docker
containers [44] that enables the deployment of micro services
to process redirected traffic. All experiments were performed
with a 40-core 2.2 GHz Intel Xeon E5-2630 and 64 GB RAM.

We evaluate BOTTLENET to answer the following ques-
tions: (i) Can modeled virtual topologies generate significantly
different topology views? (ii) Can modeled virtual topologies
effectively reduce metrics of bottleneck nodes? (iii) Is BOT-
TLENET scalable for building large-scale virtual networks?

A. Verifying Deception Algorithms

We first verify the effectiveness of BOTTLENET’s topol-
ogy deception algorithms on large-scale topologies for an
operator’s diverse input parameters such as the number of
bottleneck nodes x and the number of virtual nodes N per
virtual network. We use Mininet [48] to model large-scale
router-level topologies of Topology-Zoo [49] database for
which the size is summarized in Table III. To simulate probing
scenarios, we assign arbitrary C class IP addresses to each
router interface and generate responses from routers when a
traceroute packet is detected. In the simulation, we examine
two experimental cases: (i) x is fixed as 30% of total nodes
for each topology, and N is changed, which indicates the case
when the number of virtual nodes per virtual network varies
for protecting fixed bottleneck locations, (ii) N is fixed as 30%

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 12,2022 at 03:42:48 UTC from IEEE Xplore. Restrictions apply.

KIM et al.: BOTTLENET: HIDING NETWORK BOTTLENECKS USING SDN-BASED TOPOLOGY DECEPTION

TABLE III
ROUTER-LEVEL TOPOLOGY DATA SIMULATED IN EXPERIMENTS

Abilene AT&T SWITCH OTEGlobe
routers 11 25 42 83
links 14 57 63 99

of total nodes and « is varied from I to a maximum number of
nodes, which represents the case when the protected locations
become wider with the same number of virtual nodes. Note
that the variables N and x both affect the total number of
virtual nodes and links; thus, we used one of them to a fixed
value (i.e., 30% of total nodes) to observe how the other
influences the experimental results.

Effectiveness of Topology Similarity Reduction. The key
question here is how different a topology an adversary obtains
after deploying virtual networks. To quantify the similarities
between a physical network topology and an adversary’s
virtual topology, we measure the graph edit distance (GED),
which denotes the total cost of transforming one graph to
another one in terms of graph operations (e.g., node/link
insertions and deletions). We consider the worst-case scenario
that an adversary can fully discover all nodes and links with
repeated probing trials. Thus, we measure GED by comparing
the entire original physical topology with a virtual topology
where virtual networks are attached. The less the similarity,
the more an adversary cannot easily infer the original topol-
ogy; therefore, bottlenecks are unlikely to be targeted.

Fig. 10a shows that the similarities linearly decrement as
bottleneck node coverage x increases. We observe that a
similarity reduction is highly affected by a graph structure
as virtual nodes are more deployed for many target bottleneck
nodes. For example, when we deploy virtual nodes for 10%
bottleneck nodes, 60% similarity is reduced in OTEGlobe,
whereas 21% is reduced in AT&T. The reason for this differ-
ence is that the former has highly skewed degree distributions,
meaning that the top 10% bottleneck nodes have the most
connectivities in a graph. Therefore, it is quite effective in
reducing similarities by deploying virtual nodes on them.
In the case of varying the number of deployed virtual nodes
N on the 30% fixed bottleneck nodes, similar reduction trends
among topologies are observed because the target bottleneck
nodes are unchanged (see Fig. 10b). Note that deploying
10 virtual nodes for each 30% of bottleneck nodes guarantees
at least a 50% similarity reduction in all topologies.

Effectiveness of Static Metric Reduction. We now exam-
ine how the topology-generation algorithm is effective in
reducing the static metrics of target bottleneck nodes. To quan-
tify this, we compute the node weight w that denotes the total
bottleneck metrics for the static metrics BC, CC, DC, and
MC. Then, we calculate wpefore(vp), weight values for all
bottleneck nodes V), before applying the topology-generation
algorithm. After deploying virtual topologies, we recompute
wafrer (Vp) for the extended topology. Based on these values,
we measure the metric reduction ratio (MR) with the following
definition:

avg (wafter (Ub))

MR@wp)=1— ———————,
) avg(wbefore(vb))

3149
— Abilene — AT&T — SWITCH — OTEGIobe
100 100
z N =30% ey =30%
£ 80 ° £ 80 i °
o} o
E 60 E 60
o 40 o 40
2 20 2 20
X X
0 — 0 : ‘
0 10 20 30 40 50 0 10 20 30
% of bottleneck nodes (k) # of virtual nodes (N)
(a) (b)

Fig. 10. Measured topology similarity for variants of x and N.

where avg denotes the average weights of bottleneck
nodes.

To assess the performance of our algorithm, we use the
Erdos-Renyi (ER) graph model [50] as a baseline. Whereas
our algorithm generates a scale-free graph for which the
degree distributions are biased, the ER model produces a uni-
formly connected graph, where all nodes have nearly similar
degrees.

Fig. 1la illustrates measured MR when N is changed.
Overall, we conclude that deploying 10 virtual nodes for each
bottleneck node is the most efficient solution to protect a total
of 30% of bottleneck nodes. After that point, it turns out that
there are no significant differences of the reduction rate from
the ER model. In particular, ER also performs well for all
metrics after N = 20. However, it costs a lot, given the number
of virtual nodes required. For example, deploying 20 virtual
nodes to 30% of bottleneck nodes in SWITCH requires the
deployment of 260 virtual nodes in total to achieve a 60%
reduction rate, whereas our algorithm requires only 100 virtual
nodes. Thus, our algorithm can make deployment nodes save
system resources.

Fig. 11b shows how BOTTLENET can protect a wide area
of bottleneck nodes as x increments. Although our algo-
rithm rather increases metrics when nodes are deployed on
few deployment nodes, the performance becomes better after
x = 10% of a network size. Hence, the wide deployment
of virtual networks is more effective for reducing bottleneck
metrics. The reason is that virtual nodes evenly distributed in
a network topology contribute to an increase of their static
metrics, making bottleneck nodes appear as normal nodes,
whereas virtual nodes seem attractive targets.

Our algorithm particularly shows better performance when
BC and MC metrics are used. The reason is that they are
strongly affected by a graph structure rather than network
topology size. For example, MC metrics become larger on
a scale-free graph because there are many link-cuts due to
the existence of bottleneck nodes. On the other hand, the ER
model generates particularly few link-cuts because links are
uniformly connected. This property leads to significant fluc-
tuations of the MR ratio when the ER model is applied to
reduce MC metrics. The structure-dependent trends are also
observed in the BC metric. As the virtual network grows, a few
nodes are involved in many routing paths, which makes the
BC values of the nodes significantly larger than others. In the
case of CC, DC, it turns out that they are primarily affected by
the total number of virtual nodes. This is why the ER model’s

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 12,2022 at 03:42:48 UTC from IEEE Xplore. Restrictions apply.

3150 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021
— Abilene — AT&T — SWITCH — OTEGIobe
-- Abilene (ER) -- AT&T (ER) -- SWITCH (ER) -- OTEGIobe (ER)
BC CcC MC
1 1 1 1
0.8 0.8 0.8 0.8
2 0.6 2 0.6 o 0.6 o 0.6
© 04 ® 04 © 04 © 04
x 0.2 x 0.2 x 0.2 x 0.2
s 0 = 0 = 0 = 0
-0.2 -0.2 -0.2 -0.2
-0.4 -0.4 -0.4 ' -0.4
0 10 20 30 0 10 20 30 0 10 20 30 0 10 20 30
of virtual nodes (N) # of virtual nodes (N) # of virtual nodes (N) # of virtual nodes (N)
(a) K is fixed as 30% of a network size and N is variable.
1 1 1 1
0.8 0.8 0.8 0.8
© 0.6 © 0.6 S 0.6 o 0.6
® 04 ® 04 ® 04 © 04
x 0.2 x 0.2 x 0.2 x 0.2
s o0 = 0 = 0 = 0j
-0.2 -0.2 -0.2 -0.2
-0.4 -0.4 -0.4 ¢ -0.4
0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50 0 10 20 30 40 50
% of bottleneck nodes (k) % of bottleneck nodes (k) % of bottleneck nodes (k) % of bottleneck nodes (k)
(b) N is fixed as 30% of a network size and k is variable.
Fig. 11. Measured Metric Reduction (MR) ratio for different parameters: # of virtual nodes N and # bottleneck nodes «.
—— EPFL-UNIL ---- EPFL-Geneva —— ETH-UNIL ---- ETH-Horw —— ETH ---- UNIL —— Geneva - Horw
1001 - Rerouting 20 4~ Rerouting 20
. « Rerouting
80 1 ST =0 T Ty A]_S- i 4
3 N ‘l.', “:‘ \ \‘" "\I’ “." \ 3 i \
& 60 a oy
g w0 5|
o . =
20 A ','
odo___. : i . 0- Y Rerouting :-. "M‘_'—‘I"m : .
0 100 200 300 0 100 200 300 0 100 200 300 0 100 200 300
Time (s) Time (s) Time (s) Time (s)

Fig. 12. Results for effectiveness of rerouting algorithms to reduce the dynamic metrics measured in the scenario shown in Fig. 13.

MR becomes better than our algorithms for DC when many

SEeegeES e &

°°i?

virtual nodes are deployed.
S S = i
B. Verifying Rerouting Algorithms Siteh IXEurope S = ET_?
Next, we verify the effectiveness of dynamic metric reduc- & @ Q\‘ S "’\:" ------- -
tion when an adversary mounts blind LFAs (§V-C.4); thus, Horw A ‘@
~ - ~ tep LA -
congestion occurs on (non-)bottleneck links. For this, we emu- Site B /EL\; ______
N _

lated a rerouting scenario for mitigating LFAs in the SWITCH
topology as depicted in Fig. 13. In the scenario, we divided
the network into several groups: sites A, B, and C, where A
and B send attack flows (green and red arrows) to the target
area C (decoy servers). The purpose of this attack is to make
congestion on bottleneck links ETH-UNIL and EPFL-UNIL
because those links are located in important positions in
the network. For bandwidth configurations, we uniformly set
the link capacity to be 10 Gbps for all links. We generate
background traffic among each site to consume approximately
20% of the link capacity. Regarding attack flows, we deployed
200 bots to 5 switches in each site A, B, and each bot sends
6 Mbps attack flows to site C to consider the low-rate property
of LFAs. As such, the aggregated traffic becomes about 8 Gbps
on the bottleneck links, which is likely to saturate the link
capacity when additional traffic is requested. We assume that a

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 12,2022 at 03:42:48 UTC from IEEE Xplore. Restrictions apply.

lﬁx\c
ﬂ_- .?éll,ey_a-—--s c
/C!L s AN \\\A~

Fig. 13. The SWITCH topology used for testing dynamic metric reduction.
The blue and red arrows denote attack flows sent from Site A and B to
Site C, respectively. The dashed lines indicated rerouted flows and the grey
nodes represent deployed virtual nodes.

network operator instructs BOTTLENET to execute the reroute
action to avoid those links becoming congested.
Effectiveness of Dynamic Metric Reduction. Fig. 12
illustrates measured dynamic metrics during the execution
of the rerouting scenario. As shown in the left two plots,
the CBR of the bottleneck links EPFL-UNIL and ETH-UNIL
became 80% when LFAs are mounted, whereas ALB was

KIM et al.: BOTTLENET: HIDING NETWORK BOTTLENECKS USING SDN-BASED TOPOLOGY DECEPTION

TABLE IV
PROCESSING TIME (MS) TO GENERATE DYNAMIC METRICS

ATL CBR ALB LL
Statistics 73.01 ms 98.44 ms 98.44 ms 0.79 ms
Collection (99.76%) (99.10%) (99.10%) (91.29%)
Post 0.18 ms 0.89 ms 0.89 ms 1.12 ms
Processing (0.24%) (0.90%) (0.90%) (8.71%)
“ 400
g — Abilene k=30%
5 3007 _ ATeT
=
$ 200 | — SWITCH
€ — OTEGlob
> 100 obe
o
v 0
o 0 10 20 30

of virtual nodes (N)

Fig. 14. Deployment time (s) per virtual nodes N.

20%. At the time that reroute actions were executed,
their link capacity was restored to 90% as attack flows are
rerouted to virtual networks deployed at the deployment nodes
Geneva and UNIL. This situation is illustrated as CBR of the
entry links to deployment nodes, such as EPFL-Geneva and
ETH-Horw, was increased to 75%, whereas their ALB was
decreased to 25%. We also observed that the bandwidth of
rerouted attack flows fluctuated due to the imposed constraints
on virtual networks (see §VI-B). Before the rerouting action,
the SDN controller had to proactively install many forwarding
rules along the rerouted path to avoid service disruption. This
method led to a temporary saturation of the OpenFlow control
channel, displayed as temporary high LL (i.e., 1820 ms) at the
rerouting time due to delayed link measurement (see Fig. 4).

C. Performance Benchmark

In this evaluation, we conducted a performance benchmark
to measure the system overhead of BOTTLENET to generate
dynamic metrics and virtual switches.

Latency of Generating Dynamic Metrics. BOTTLENET
requires two sub-stages for generating dynamic metrics:
(i) statistics collection, which gathers raw network statistics
from switches, and (ii) post-processing, which synthesizes
dynamic metrics using defined equations in §V-A. We measure
the processing time of each step as shown in Table IV, where
parentheses denote each proportion of total time. The result
indicates that all dynamic metrics are generated in less than
1 second, and among them, obtaining CBR from all links
requires the longest processing times as it pulls out all port
statistics from switches. We note that the statistics collection
occupies a large proportion of the metric-generation process.
This limitation can be significantly improved if BOTTLENET
is supported by scalable SDN controllers. For example,
the recent performance testing result of ONOS [35] has
achieved a 36.9 ms elapsed time when installing 200 flows
rules [51].

Time to Deploy Virtual Switches. Fig. 14 illustrates
the measured deployment time when virtual topologies are

3151

converted into virtual switches according to N. For k = 30%
of a network size, BOTTLENET deploys 10 virtual nodes in
less than a 1 minute for a country-scale network topology
such as AT&T and SWITCH and in less than 2 minutes for
a continental-level network topology OTEGlobe. From this
result, we argue that BOTTLENET can be used on a practical
network environment if a reliable control channel and host
agent are correctly installed on available hosts.

VII. DISCUSSION

Network Probing in SDN. As noted, adversaries need to
find bottlenecks by probing the network before conducting
LFAs. Hence, handling probing packets is the most critical
operation in our system. Technically, SDN-enabled switches
do not support traceroute [52]; thus, we may consider that
if SDN-enabled switches are fully deployed in a network,
LFAs are not so feasible; adversaries have a problem in
targeting bottlenecks. However, network probing is an essential
option in understanding network status and debugging network
failures; hence, several researchers have proposed traceroute
tools tailored for SDN [53].

As such, we also enable traceroute in our system by
leveraging a few OpenFlow protocol features. When installing
flow rules with Flow_Mod, BOTTLENET inserts the decre-
ment_IP_TTL action into the beginning of the rule action
chain. This approach makes all incoming packets decrease
their TTL values when matched in switch flow tables.
Although the decrement IP_TTL is an optional field in the
current OpenFlow protocol specification [39], we observe that
network vendors include it as a supported feature in the
state-of-the-art product specifications [54]. To detect expired
packets for which the TTL = 1, a controller needs to instruct
OpenFlow switches to configure the invalid TTL flag to receive
Packet_In messages that include an expired packet header.
When detected, the controller generates a Packet_Out mes-
sage, which instructs a switch to send ICMP Time_Excceded
packets to a sender with a router IP address. With this
methodology, BOTTLENET can control network probing sent
by attackers and help operators understand network status as
well.

Topology Inference Attacks. Adversaries may attempt to
infer the structure of the physical topology by observing
common nodes and links that are frequently shown in probing
responses. To prevent this issue, BOTTLENET periodically
re-runs the topology-generation algorithm to mutate the struc-
ture of virtual topologies for a certain epoch. Here, dynamic
metrics that vary by network status can be unpredictable
seed values for the node selection probability (§V-B). Hence,
it results in the deployment of virtual networks into different
node locations from the previous epoch.

Network Address Allocation. Our virtual networks require
public IP address blocks to answer with valid responses that
can deceive adversaries. We envision that network operators
provide BOTTLENET with a public IP address range from
unused address blocks as an investment for enhancing the
security of their network. Indeed, there have been numer-
ous prior efforts that have successfully leveraged unused 1P

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 12,2022 at 03:42:48 UTC from IEEE Xplore. Restrictions apply.

3152

addresses for monitoring suspicious activities [55] and using
honeynets to hinder scanning activities [28], [34]).

Partial Deployment. One of the limitations in the current
design is that BOTTLENET requires all switches to sup-
port SDN (i.e., OpenFlow) for collecting fine-grained bot-
tleneck metrics. We note that BOTTLENET can also support
a partial-deployment model. In this model, BOTTLENET can
obtain the required metrics from traditional network manage-
ment protocols such as SNMP and NetConf.

Control-Plane Resilience. An adversary can exploit SDN
capabilities if they know that a target network is managed by
a centralized SDN controller. For example, they can mount
control-plane DDoS attacks [56], [57] that saturate control
channels between SDN switches and the controller by trigger-
ing several Packet_In messages. This issue can be addressed
if network operators adopt a more resilient control-plane,
such as physically distributed controllers (e.g., ONOS [58],
OpenDaylight [36]) or more intelligence data-planes [59], [60]
that alleviate control message flooding.

VIII. CONCLUSION

Protecting critical network nodes and links from external
threats is an extremely onerous task due to the openness of the
Internet. An adversary can easily identify network bottlenecks
on the Internet through active topology probing, making it
difficult for an operator to fortify attack points. In this paper,
we present BOTTLENET, which is a comprehensive network
topology deception framework that provides diverse bottleneck
metrics and complex topology generation algorithms. Our
framework allows for the definition of diverse bottleneck
metrics in terms of graph and performance properties for nodes
and links. Thus, an operator can devise the desired inputs
based on network policy or conditions, and BOTTLENET
selects the best deployment nodes with the assistance of its
node selection algorithms. By deploying virtual networks,
our evaluations demonstrate how it is possible to manipulate
the topology view of adversaries with proactive topology
deception algorithms and reactive manipulation rules.

ACKNOWLEDGMENT

The authors thank the anonymous TIFS reviewers for their
valuable comments. They would also like to thank Eduard
Marin and Mauro Conti for joining important discussions on
this article and Jeongyoon Moon for initial experiments.

REFERENCES

[1] A. Dhamdhere and C. Dovrolis, “The Internet is flat: Modeling the
transition from a transit hierarchy to a peering mesh,” in Proc. 6th Int.
Conf. (Co-NEXT), 2010, pp. 1-12.

[2] R. Albert, H. Jeong, and A.-L. Barabasi, “Error and attack tolerance of
complex networks,” Nature, vol. 406, no. 6794, pp. 378-382, Jul. 2000.

[3] M. S. Kang, S. B. Lee, and V. D. Gligor, “The crossfire attack,” in Proc.
IEEE Symp. Secur. Privacy, May 2013, pp. 127-141.

[4] A. Studer and A. Perrig, “The coremelt attack,” in Proc. Eur. Conf. Res.
Comput. Secur., 2009, pp. 37-52.

[5] S. M. Bellovin and E. R. Gansner, “Using link cuts to attack
Internet routing,” in A Technical Report From Columbia University,
2013. [Online]. Available: https://academiccommons.columbia.edu/doi/
10.7916/D84JOMTO

IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 16, 2021

[6] R. Cohen, K. Erez, D. ben-Avraham, and S. Havlin, “Breakdown of
the Internet under intentional attack,” Phys. Rev. Lett., vol. 86, no. 16,
pp. 3682-3685, Apr. 2001.

[71 M. S. Kang and V. D. Gligor, “Routing bottlenecks in the Internet:
Causes, exploits, and countermeasures,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Nov. 2014, pp. 321-333.

[8] (2016). Large DDoS Attacks Cause Outages at Twitter, Spotify, and
Other Sites. Accessed: Apr. 7, 2021. [Online]. Available: https:/
techcrunch.com/2016/10/21/many-sites-including-twitter-and-spot%ify-
suffering-outage/

[9] (2013). Can a DDoS Break the Internet? Sure! Just Not all of it.
Accessed: Apr. 7, 2021. [Online]. Available: https://arstechnica.com/
information-technology/2013/04/can-a-ddos-break %-the-internet-sure-
just-not-all-of-it/

[10] R. Meier, P. Tsankov, V. Lenders, L. Vanbever, and M. Vechey,
“NetHide: Secure and practical network topology obfuscation,” in Proc.
Secur. Symp. USENIX, 2018, pp. 693-709.

[11] S. T. Trassare, R. Beverly, and D. Alderson, “A technique for network
topology deception,” in Proc. MILCOM IEEE Mil. Commun. Conf.,
Nov. 2013, pp. 1795-1800.

[12] X. Ding, F. Xiao, and M. Zhou, “Active link obfuscation to thwart
link-flooding attacks for Internet of Things,” 2017, arXiv:1703.09521.
[Online]. Available: http://arxiv.org/abs/1703.09521

[13] M. S. Kang, V. D. Gligor, and V. Sekar, “SPIFFY: Inducing cost-
detectability tradeoffs for persistent link-flooding attacks,” in Proc. Netw.
Distrib. Syst. Secur. Symp., 2016, pp. 53-55.

[14] A. Aydeger, N. Saputro, and K. Akkaya, “Utilizing NFV for effective
moving target defense against link flooding reconnaissance attacks,”
in Proc. MILCOM IEEE Mil. Commun. Conf. (MILCOM), Oct. 2018,
pp. 946-951.

[15] S. Achleitner, T. La Porta, P. McDaniel, S. Sugrim, S. V. Krishnamurthy,
and R. Chadha, “Cyber deception: Virtual networks to defend insider
reconnaissance,” in Proc. 8th ACM CCS Int. Workshop Manag. Insider
Secur. Threats, Oct. 2016, pp. 57-68.

[16] N. Hu, L. Li, Z. M. Mao, P. Steenkiste, and J. Wang, “Locat-
ing Internet bottlenecks: Algorithms, measurements, and implications,”
in Proc. Conf. ACM Special Interest Group Data Commun., 2004,
pp. 41-54.

[17] P. Holme, B. J. Kim, C. N. Yoon, and S. K. Han, “Attack vulnerability
of complex networks,” Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat.
Interdiscip. Top., vol. 65, no. 5, May 2002, Art. no. 056109.

[18] D. Magoni, “Tearing down the Internet,” IEEE J. Sel. Areas Commun.,
vol. 21, no. 6, pp. 949-960, Aug. 2003.

[19] M. Schuchard, A. Mohaisen, D. F. Kune, N. Hopper, Y. Kim, and
E. Y. Vasserman, “Losing control of the Internet: Using the data plane
to attack the control plane,” in Proc. 17th ACM Conf. Comput. Commun.
Secur. (CCS), 2010, pp. 726-728.

[20] S. Shin, L. Xu, S. Hong, and G. Gu, “Enhancing network security
through software defined networking (SDN),” in Proc. 25th Int. Conf.
Comput. Commun. Netw. (ICCCN), Aug. 2016, pp. 1-9.

[21] S. K. Fayaz, Y. Tobioka, V. Sekar, and M. Bailey, “Bohatei: Flexible
and elastic DDoS defense,” in Proc. Secur. Symp. USENIX, 2015,
pp. 817-832

[22] J.Zheng, Q. Li, G. Gu, J. Cao, D. K. Y. Yau, and J. Wu, “Realtime DDoS
defense using COTS SDN switches via adaptive correlation analysis,”
IEEE Trans. Inf. Forensics Security, vol. 13, no. 7, pp. 1838-1853,
Jul. 2018.

[23] (2020). Open vSwitch. Accessed: Apr. 7, 2021. [Online]. Available:
http://openvswitch.org

[24] (2020). Ryu. Accessed: Apr. 7, 2021. [Online]. Available: https://osrg.
github.io/ryu/

[25] (2006). Traceroute for Linux. Accessed: Apr. 7, 2021. [Online]. Avail-
able: http://man7.org/linux/man-pages/man8/traceroute.8.html

[26] (2020). iPerf3. Accessed: Apr. 7, 2021. [Online]. Available: https://
software.es.net/iperf/

[27] A.-L. Barabasi and E. Bonabeau, “Scale-free networks,” Sci. Amer.,
vol. 288, no. 5, pp. 60-69, 2003.

[28] N. Provos, “A virtual honeypot framework,” in Proc. Secur. Symp.
USENIX, 2004, pp. 1-14.

[29] S. B. Lee, M. S. Kang, and V. D. Gligor, “CoDef: Collaborative defense
against large-scale link-flooding attacks,” in Proc. 9th ACM Conf. Emerg.
Netw. Exp. Technol., Dec. 2013, pp. 417-428.

[30] (2020). A Practical Guide to (Correctly) Troubleshooting With Tracer-
oute. Accessed: Apr. 7, 2021. [Online]. Available: https://archive.nanog.
org/meetings/nanog45/presentations/Sunday/RAS_tra%ceroute_N45.pdf

[31] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with rocketfuel,” ACM SIGCOMM Comput. Commun. Rev., vol. 32,
no. 4, pp. 133-145, Oct. 2002.

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 12,2022 at 03:42:48 UTC from IEEE Xplore. Restrictions apply.

KIM et al.: BOTTLENET: HIDING NETWORK BOTTLENECKS USING SDN-BASED TOPOLOGY DECEPTION 3153

(32]
[33]

[34]

[35]
[36]
[37]
[38]

[39]

[40]

[41]

[42]
[43]
[44]
[45]
[46]
[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Authorized licensed use limited to: Korea Advanced Inst of Science & Tech - KAIST. Downloaded on March 12,2022 at 03:42:48 UTC from IEEE Xplore. Restrictions apply.

B. Augustin et al., “Avoiding traceroute anomalies with Paris traceroute,”
in Proc. 6th ACM SIGCOMM Internet Meas. (IMC), 2006, pp. 153—158.
S. Jain et al., “B4: Experience with a globally-deployed software defined
wan,” in Proc. ACM SIGCOMM Conf. SIGCOMM, Aug. 2013, pp. 1-12.
L. Alt, R. Beverly, and A. Dainotti, “Uncovering network tarpits with
degreaser,” in Proc. 30th Annu. Comput. Secur. Appl. Conf. (ACSAC),
2014, pp. 3-14.

P. Berde et al., “ONOS: Towards an open, distributed SDN OS,” in Proc.
Workshop Hot Topics Softw. Defined Netw., 2014, pp. 1-6.

(2020). OpenDaylight. Accessed: Apr. 7, 2021. [Online]. Available:
https://www.opendaylight.org

(2020). PlanetLab. Accessed: Apr. 7, 2021. [Online]. Available: https:/
www.planet-lab.org

L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, vol. 40, no. 1, p. 35, Mar. 1977.

(2014). OpenFlow Switch Specification Version 1.3.5. Accessed:
Apr. 7, 2021. [Online]. Available: https://www.opennetworking.org/wp-
content/uploads/2014/10/openflow-swit%ch-v1.3.5.pdf

R. Skowyra et al., “Effective topology tampering attacks and defenses
in software-defined networks,” in Proc. 48th Annu. IEEE/IFIP Int. Conf.
Dependable Syst. Netw. (DSN), Jun. 2018, pp. 374-385.

(2005). Abilene Network. Accessed: Apr. 7, 2021. [Online]. Available:
https://web.archive.org/web/20120324103518/http://www.internet2.
edu/pub%s/200502-1S-AN.pdf

A. D. Broido and A. Clauset, “Scale-free networks are rare,” Nature
Commun., vol. 10, no. 1, pp. 1-10, Dec. 2019.

R. Albert and A.-L. Barabdsi, “Statistical mechanics of complex net-
works,” Rev. Modern Phys., vol. 74, no. 1, p. 47, 2002.

(2020). Docker. Accessed: Apr. 7, 2021. [Online]. Available: https:/
www.docker.com

(2020). Open vSwitch Extensions. Accessed: Apr. 7, 2021. [Online].
Available: http://docs.openvswitch.org/en/latest/topics/ovs-extensions/
(2020). CloudFlare. Accessed: Apr. 7, 2021. [Online]. Available:
https://www.cloudflare.com/

(2020). PuLP. Accessed: Apr. 7, 2021. [Online]. Available: https://coin-
or.github.io/pulp/

B. Lantz, B. Heller, and N. McKeown, “A network in a laptop:
Rapid prototyping for software-defined networks,” in Proc. 9th ACM
SIGCOMM Workshop Hot Topics Netw. (Hotnets), 2010, pp. 1-6.

S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The Internet topology zoo,” IEEE J. Sel. Areas Commun., vol. 29, no. 9,
pp. 1765-1775, Oct. 2011.

P. Erd6s and A. Rényi, “On the evolution of random graphs,” Publ.
Math. Inst. Hung. Acad. Sci., vol. 5, no. 1, pp. 17-60, 1960.

(2020). ONOS Master: Experiment I—Single Bench Flow Latency Test.
Accessed: Apr. 7,2021. [Online]. Available: https://wiki.onosproject.org/
display/ONOS/Master%3 A+Experiment+I+-+Sing%
le+Bench+Flow+Latency+Test

J. Cao et al., “The CrossPath attack: Disrupting the SDN control channel
via shared links,” in Proc. Secur. Symp. USENIX, 2019, pp. 19-36.

P. Tammana, R. Agarwal, and M. Lee, “CherryPick: Tracing packet
trajectory in software-defined datacenter networks,” in Proc. Ist ACM
SIGCOMM Symp. Softw. Defined Netw. Res., Jun. 2015, pp. 1-7.
(2020). OpenFlow Configuration Guide, Cisco 10S XE Gibraltar.
Accessed: Apr. 7, 2021. [Online]. Available: https://www.cisco.com/c/
en/us/td/docs/ios-xml/ios/prog/configuration/16%11/b_1611_
programmability_cg/OpenFlow.html]

V. Yegneswaran, P. Barford, and D. Plonka, “On the design and use
of Internet sinks for network abuse monitoring,” in Recent Advances in
Intrusion Detection. Berlin, Germany: Springer, 2004, pp. 146-165.

S. Shin and G. Gu, “Attacking software-defined networks: A first
feasibility study,” in Proc. 2nd ACM SIGCOMM Workshop Hot Topics
Softw. Defined Netw. (HotSDN), 2013, pp. 165-166.

M. Zhang, G. Li, L. Xu, J. Bi, G. Gu, and J. Bai, “Control plane reflec-
tion attacks in SDNs: New attacks and countermeasures,” in Research in
Attacks, Intrusions, and Defenses. Cham, Switzerland: Springer, 2018,
pp. 161-183.

(2020). Open Network Operating System (ONOS). Accessed:
Apr. 7, 2021. [Online]. Available: https://wiki.onosproject.org/

S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and vigilant switch flow management in software-defined
networks,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.
(CCS), 2013, pp. 413-424.

H. Wang, L. Xu, and G. Gu, “FloodGuard: A DoS attack prevention
extension in software-defined networks,” in Proc. 45th Annu. IEEE/IFIP
Int. Conf. Dependable Syst. Netw., Jun. 2015, pp. 239-250.

Jinwoo Kim received the B.S. degree in computer
science and engineering from Chungnam National
University and the M.S. degree from the Graduate
School of Information Security, KAIST, where he is
currently pursuing the Ph.D. degree with the School
of Electrical Engineering. His research interests
include software defined networking (SDN) security,
designing a system for enchaining network security,
and network theory.

Jaehyun Nam received the B.S. degree in computer
science and engineering from Sogang University,
South Korea, and the M.S. and Ph.D. degrees from
the School of Computing, KAIST. He is currently
a Technical Advisor with AccuKnox. His research
interests include networked and distributed com-
puting systems. He is especially interested in per-
formance and security issues in cloud computing
environments.

Suyeol Lee received the B.S. degree from the School
of Electrical Engineering, KAIST, where he is cur-
rently pursuing the M.S. degree with the School of
Electrical Engineering. His research interest includes
the analysis of illicit bitcoin activities using graph-
based deep learning.

Vinod Yegneswaran received the A.B. degree from
the University of California at Berkeley, Berkeley,
CA, USA, in 2000, and the Ph.D. degree from
the University of Wisconsin, Madison, WI, USA,
in 2006, all in computer science. He is currently
the Senior Computer Scientist of SRI International,
Menlo Park, CA, pursuing advanced research in
network and systems security. His current research
interests include SDN security, malware analysis,
and anti-censorship technologies. He has served on
several NSF panels and program committees of
security and networking conferences, including the IEEE Security and Privacy
Symposium.

Phillip Porras received the M.S. degree in computer
science from the University of California at Santa
Barbara, Santa Barbara, CA, USA, in 1992. He is
currently an SRI Fellow and the Program Director of
the Computer Science Laboratory, Internet Security
Group, SRI, Menlo Park, CA. He has participated on
numerous program committees and editorial boards,
and participates on multiple commercial company
technical advisory boards. He continues to publish
and conduct technology development on numerous
topics, including intrusion detection and alarm cor-
relation, privacy, malware analytics, active and software defined networks, and
wireless security.

Seungwon Shin (Member, IEEE) received the B.S.
and M.S. degrees in electrical and computer engi-
neering from KAIST and the Ph.D. degree in com-
puter engineering from the Electrical and Computer
Engineering Department, Texas A&M University.
He is currently an Associate Professor with the
School of Electrical Engineering, KAIST. He is
also the Corporate Vice President at Samsung
Electronics, leading the Security Team in the IT
and Mobile Communications Division. His research
interests include software-defined networking secu-
rity, the IoT security, Botnet analysis/detection, DarkWeb analysis, and cyber
threat intelligence.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

