
Computers & Security 124 (2023) 102976

Contents lists available at ScienceDirect

Computers & Security

journal homepage: www.elsevier.com/locate/cose

Extended data plane architecture for in-network security services in

software-defined networks

Jinwoo Kim

a , Yeonkeun Kim

b , Vinod Yegneswaran

d , Phillip Porras d , Seungwon Shin

c ,
Taejune Park

e , ∗

a Kwangwoon University, Republic of Korea
b S2W Inc., Republic of Korea
c KAIST, Republic of Korea
d SRI International, USA
e Chonnam National University, Republic of Korea

a r t i c l e i n f o

Article history:

Received 19 July 2022

Revised 10 October 2022

Accepted 19 October 2022

Available online 25 October 2022

Keywords:

Software-defined networking (SDN)

Network security

Openflow

Data plane

Network function virtualization (NFV)

a b s t r a c t

Software-Defined Networking (SDN)-based Network Function Virtualization (NFV) technologies improve

the dependability and resilience of networks by enabling administrators to spawn and scale-up traffic

management and security services in response to dynamic network conditions. However, in practice,

they often suffer from poor performance and require complex configurations because network packets

must be ‘detoured’ to each virtualized security service, which expends bandwidth and increases network

propagation delay. To address these challenges, we propose a new SDN-based data plane architecture,

called DPX (Data Plane eXtension), that natively supports in-network security services. The DPX action

model reduces redundant processing caused by frequent packet parsing and provides administrators with

a simplified (and less error-prone) method for configuring security services into the network. DPX also

increases the efficiency of enforcing complex security policies by introducing a novel technique called

action clustering , which aggregates security actions from multiple flows into a small number of synthetic

rules. Also, the application of action clustering (i.e., advanced and global) provides more diverse policies

and network-wide detection. We present an implementation of DPX in hardware using NetFPGA-SUME

and in software using Open vSwitch. We evaluate the performance of the DPX prototype and the effi-

cacy of its flow-table simplifications against a range of complex network policies exposed to line rates of

10 Gbps.

© 2022 Elsevier Ltd. All rights reserved.

1

c

w

t

w

s

m

t

r

a

s

d

c

M

v

c

2

w

i

n

v

l

c

d

e

h

0

. Introduction

Today’s dynamic network environments represented by 5G or

loud computing enable many services to be operated through net-

orking, shifting the paradigm of service infrastructure. In order

o efficiently manage various services, virtualization techniques are

idely employed in the infrastructure to separate services from

pecialized hardware devices. The separation leads to the deploy-

ent of virtualized machines (VMs) that run on commercial off-

he-shelf (COTS) servers, facilitating elastic scaling and dynamic

esource provisioning. Because VMs can be up, down, or moved

nytime, anywhere for the resource provisioning, security polices

hould be dynamically updated to the changes. However, the tra-

itional networking architecture that is almost static has diffi-
∗ Corresponding author.

E-mail address: taejune.park@jnu.ac.kr (T. Park) .

o

fi

t

s

ttps://doi.org/10.1016/j.cose.2022.102976

167-4048/© 2022 Elsevier Ltd. All rights reserved.
ulty in adapting to the frequent changes due to its low-flexibility.

ore specifically, adjusting configurations of legacy network de-

ices mainly relies on operator’s manual labor, which is time-

onsuming and error-prone (Casado et al., 2007; Greenberg et al.,

005).

Therefore, new network architectures for adapting to net-

ork changes have emerged, such as Software-Defined Network-

ng (SDN) and Network Function Virtualization (NFV). Both tech-

ologies aim to decouple network functions from hardware de-

ices into the software so that operators can devise network po-

ices flexibly. By doing so, SDN provides a unified platform that

ontrols network devices in a centralized place, and NFV enables

iverse network functions to be deployed to COTS servers. Thus,

ven if a network environment changes (e.g., VMs are created

r migrated on the fly), operators can easily alter network con-

gurations with SDN, or quickly deploy required network func-

ions with NFV. Considering these benefits, many SDN/NFV-based

ecurity solutions have been proposed so far to defend existing

https://doi.org/10.1016/j.cose.2022.102976
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cose
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2022.102976&domain=pdf
mailto:taejune.park@jnu.ac.kr
https://doi.org/10.1016/j.cose.2022.102976

J. Kim, Y. Kim, V. Yegneswaran et al. Computers & Security 124 (2023) 102976

n

c

G

S

n

F

t

s

a

m

o

d

2

n

c

fl

fi

w

f

m

t

f

s

p

m

a

o

t

F

e

p

t

O

f

P

O

c

n

c

p

t

b

h

d

a

o

a

t

t

w

p

f

w

t

a

m

D

D

t

e

t

r

T

i

O

N

o

b

o

c

i

p

c

s

c

o

a

t

2

t

2

m

o

p

W

c

w

a

2

d

w

M

b

p

d

t

p

r

e

e

c

a

etwork threats (e.g., DDoS attacks and network scanning) in a

ost-efficient way (Fayaz et al., 2015; Fayazbakhsh et al., 2014;

ember-Jacobson et al., 2014; Hwang et al., 2014; Qazi et al., 2013;

hin and Gu, 2012; Shin et al., 2013).

However, deploying SDN/NFV-based solutions in the dynamic

etwork environment raises performance and management issues.

irst, in the current deployment strategy, all traffic must be de-

oured to network choke-points where an SDN controller or NFV in-

tance is deployed to enforce security policies. However, this comes

t the cost of increasing routing hops, leading to significant perfor-

ance degradation. Second, in order to fully leverage the benefits

f SDN/NFV-based solutions, network operators need to carefully

esign an orchestration strategy on SDN control plane (Fayaz et al.,

015; Kim and Feamster, 2013). For example, network operators

eed to solve an optimization problem to determine optimal lo-

ations of NFV nodes given resources, or produce diverse network

ow rules to steer traffic through the choke-points.

We posit that the root cause stems from the need for traf-

c steering when operating SDN/NFV security solutions. Thus, if

e do not need to deploy additional nodes for running security

unctions, we can achieve the better performance and manage-

ent simplicity. To that end, we raise the following research ques-

ion: Can we extend SDN switches to support native security functions

rom the data plane to eliminate the need for traffic steering? To an-

wer the question, we begin by examining the existing SDN data

lane architecture. Currently, most SDN switch implementations

erely support basic packet-handling logic (e.g., forward, drop,

nd modify headers). However, most SDN switches include vari-

us processing elements (e.g., storing packets and parsing headers)

hat may be utilized for embedding additional security functions.

or example, if a switch filters out disallowed packets, the pack-

ts would avoid a trip to the firewall, which eliminates redundant

acket forwarding. Recent advances in high-performance (i.e., high

hroughput, low latency) software switches Honda et al. (2015) ;

pen vSwitch (2022) , suggests that this could potentially be a

easible solution. Based on these insights, we design DPX (D ata-

 lane E xtension), a new SDN data plane architecture that extends

penFlow (2022) , a de-facto standard protocol used for communi-

ation between an SDN controller and switches. By doing so, DPX

ot only allows network operators to easily enforce security poli-

ies (by only focusing the switch rules), but also achieves high-

erformance and low-latencies.

An important challenge to be addressed in making this leap is

he ability to express security policies over aggregated flow sets

ecause representing security rules using per-flow rules is pro-

ibitively expensive (i.e., flow-steering complexity challenge). To ad-

ress this problem, DPX also implements a novel technique, called

ction clustering , which allows a security service to concurrently

perate on a set of flows. It not only simplifies a flow table for

 service chaining, but also enables an advanced action clustering

o represent more sophisticated policies, or a global action clus-

ering to detect and mitigate a network-wide attack. In addition,

e aim to keep the original philosophy of SDN (i.e., simple data

lane), and thus we basically make DPX as modular components

or an SDN data plane. As we noted, newly added security actions

ill be realized by OpenFlow actions, and those new security ac-

ions will be supported by each DPX security action block. Each

ction block can be easily inserted or removed based on require-

ents. For example, if a network administrator wants to detect

DoS attacks, we can provide DPX SDN data plane enabled with

oS detection module. In addition, we implement network ac-

ions that can be utilized for running general middlebox functions,

.g., NAT (Network Address Translation) and ARP (Address Resolu-

ion Protocol) actions. Currently, DPX supports six network secu-

ity actions and three additional network actions (summarized at

able 2).
2

We implement the prototype of DPX into two versions,

.e., software version and hardware using Open vSwitch

pen vSwitch (2022) ; Pfaff et al. (2015) and NetFPGA-10G-SUME

etFPGA (2022) ; Zilberman et al. (2014) respectively to show that

ur work can be widely adopted in a real-world environment of

oth physical infrastructure and virtualized infrastructure. Also,

ur evaluation indicates DPX incurs a negligible overhead when

ompared to a naive forwarding switch and NFV, meaning that

t can support line-rate of 10 Gbps and 0.5 ms of latency while

roviding security functions. In addition, we present several use-

ases on how to detect and respond to network attacks with DPX ’s

ecurity actions. Our experiments highlight how DPX reduces

omplicated flow tables emanating from network service chains. In

ur scenarios, DPX successfully intercepts all attempted network

ttacks and compresses the number of required flow rules.

Contributions In summary, this paper makes the following con-

ributions:

• We present the design of a new data plane architecture called

DPX , which provides security services on the switch directly. It

represents security services as a set of OpenFlow actions with

optimized packet processing and simplified flow tables.

• We introduce action clustering , that logically integrates multi-

ple DPX actions into a single action. This technique compresses

complicated flow rules and eliminates unnecessary actions.

• We suggest the application of action clustering, i.e., advanced

and global action clustering. They enable more sophisticated

policies, and detect and mitigate a network-wide attack respec-

tively.

• We implement and evaluate a prototype of DPX using Open

vSwitch with six security actions and NetFPGA-10G-SUME with

two security actions. Our evaluation indicates DPX incurs a neg-

ligible overhead when compared to a naive forwarding switch

and NFV, meaning that it can support line-rate of network se-

curity services.

. Background and motivation

This section presents the limitations of existing security solu-

ions to motivate our work.

.1. Limitations of existing security solutions

Although there has been a paradigm shift in the operation

ethod in the modern network environment, various attacks

n/over the network, such as DDoS attacks, scanning, or remote ex-

loitation, are still effective in the dynamic network environment.

orse, as more services (e.g., Internet-of-Things, autonomous cars,

ellular phones) are being deployed to the dynamic network, net-

ork threats are becoming more diverse, and the expected dam-

ge from attacks has increased than in the past (Antonakakis et al.,

017). Thus, security functions are an essential component in the

ynamic network.

To protect dynamic networks from threats, we posit that net-

ork operators can take three types of security solutions: 1)

iddlebox-based approach, 2) SDN-based approach, and 3) NFV-

ased approach (see Fig. 1). In what follows, we analyze each ap-

roach from the performance and management perspectives and

iscuss its limitations. 1) Middlebox-based approach (Fig. 1 (a)): A

raditional approach is to deploy middleboxes at network choke-

oints and steer traffic through there by configuring forwarding

ules (Fayazbakhsh et al., 2014; Gember-Jacobson et al., 2014; Liu

t al., 2020; Qazi et al., 2013; Shin and Gu, 2012). As security op-

rations (e.g., packet modification, filtering, inspection) are pro-

essed on dedicated hardware, its throughput outperforms other

pproaches.

J. Kim, Y. Kim, V. Yegneswaran et al. Computers & Security 124 (2023) 102976

Fig. 1. The illustration of deployment strategies for security solutions in a dynamic network. S and E denote a source and destination respectively. R ∗ denotes network

devices (i.e., routers or switches).

p

p

t

p

e

p

i

Y

t

F

p

c

o

w

s

Y

f

o

c

2

t

i

c

i

B

N

r

p

a

p

a

i

n

t

i

v

t

o

s

t

f

W

v

a

r

i

t

T

t

p

d

t

i

s

F

c

e

S

t

b

m

o

o

2

i

n

s

T

l

D

t

t

v

Yet, steering traffic through middleboxes leads to network-wide

erformance loss because specific bandwidth along the rerouting

ath should be reserved. Also, the longer the steering distance,

he more latency users will experience. Last but not least, this ap-

roach requires significant costs to purchase middlebox devices or

nforce complex forwarding rules.

2) SDN-based approach (Fig. 1 (b)): SDN applications can im-

lement security functions by utilizing a controller’s global visibil-

ty and network-wide control (Kang et al., 2016; Lee et al., 2017;

ang et al., 2017; Yoon et al., 2015; Yu et al., 2017). These applica-

ions instruct SDN switches using the control channel (i.e., Open-

low protocol McKeown et al., 2008) to perform diverse packet

rocessing. In addition, considering that all network devices are

onnected to the controller in an SDN-enabled network, network

perators can easily deploy security functions across the network

ithout the need for traffic steering.

However, there is a significant performance overhead in that a

ingle controller must handle all traffic in networks. According to

oon et al. (2015) , SDN security applications suffer significant per-

ormance degradation from several hundred Mbps to under tens

f Mbps. Also, due to the limited features of the OpenFlow proto-

ol, only a simple header-based inspection is supported (Shin et al.,

013). Therefore, SDN applications are not suitable to deploy prac-

ical security solutions. 3) NFV-based approach (Fig. 1 (c)): Deploy-

ng VMs that run software security applications (e.g., Snort, Suri-

ata) is the widely adopted strategy by network operators, given

ts cost-efficiency and flexibility (Anderson et al., 2012; Bremler-

arr et al., 2016; Hwang et al., 2014; Sekar et al., 2012). With

FV, security functions can be placed in optimal locations close to

outing paths, and designing a complex service chain (e.g., NAT-

roxy-firewall) is also straightforward. Therefore, the NFV-based

pproach is now considered as the most promising solution for de-

loying security functions into the dynamic network environment.

Nevertheless, the NFV-based approach has a performance issue

s traffic still needs to be steered through NFV nodes. More specif-

cally, overall performance is significantly degraded if multiple NFV

odes are employed (Nam et al., 2018; Yu et al., 2015). To illustrate

his, let us consider the example shown in Fig. 2 . When deploy-

ng NFV-based security solutions, it is common to compose a ser-

ice chain with a sequence of NFV nodes (i.e., VM1-VM2-VM3 in

he example). Here, when a packet goes from an NFV node to an-
3
ther NFV node (or from the switch to an NFV node), each node

hould parse the packet to analyze its header. But, this causes all

he nodes to perform duplicated tasks, which could be a key factor

or performance degradation.

To verify this hypothesis, we conduct a simple benchmark.

e measure the end-to-end throughput when the packet tra-

erses at 10 Gbps speed to an NFV node that is connected with

 software or hardware switch. The NFV node does nothing and

eturns traffic immediately when receiving the traffic. As shown

n Fig. 3 , the NFV node only achieves about 50% throughput

han the baseline where no NFV node is deployed (i.e., simple).
hus, even if the NFV-based approach can deploy security func-

ions to more optimal locations than the middlebox-based ap-

roach, steering traffic between NFV nodes causes performance

egradation.

In addition, the NFV-based approach requires network opera-

ors to handle complicated policies, raising management complex-

ty. This challenge is becoming more serious considering a security

ervice chain that integrates multiple security functions in a series.

or instance, let us consider the example shown in Fig. 4 (a), that

onfigures five flows with different service chains. In order to op-

rate these service chains, complicated flow rules are required in

DN switches to forward packets between node-to-node or switch-

o-nodes (see Fig. 4 (b)). Eventually, the switches’ flow table would

e complicated and messy. Further, a network operator should

anage extra control channels for each NFV node (i.e., the NFV

rchestrator in Fig. 2). This is opposite with the design philosophy

f SDN, which operates a network from a centralized location.

.2. Our solution

DPX eliminates the need for traffic steering through mak-

ng SDN switches support native security functions. By doing so,

etwork operators can directly implement security functions on

witches without deploying additional middleboxes or NFV nodes.

his approach avoids performance degradation because traffic no

onger needs to be steered through other locations. In addition,

PX provides a variety of practical security functions to support

he same level of security features with NFV. Specifically, DPX ex-

ends OpenFlow to incorporate security features that perform ad-

anced actions, such as payload inspection, rate detection, scanning

J. Kim, Y. Kim, V. Yegneswaran et al. Computers & Security 124 (2023) 102976

Fig. 2. NFV operation breakdown.

Fig. 3. Performance degradation caused by traffic steering.

Fig. 4. An illustration of the management challenge in security service chaining.

4

J. Kim, Y. Kim, V. Yegneswaran et al. Computers & Security 124 (2023) 102976

d

f

n

t

3

w

t

p

i

W

w

w

Q

t

W

a

t

f

t

t

(

p

c

t

s

p

a

u

c

N

(

i

2

l

e

n

s

p

f

O

t

2

t

G

c

t

s

f

w

t

i

n

d

d

s

l

v

f

t

g

s

O

t

n

t

l

4

a

d

t

a

4

D

t

a

o

o

c

d

a

(

t

t

1

d

I

w

t

D

b

a

actions.

T

C

etection, header modification, and session monitoring. As these

unctions are supported in SDN switches, network operators do

ot need to manage another control channel (i.e., NFV orchestra-

or) and additional security nodes in SDN-enabled networks.

. Related work

This section introduces related works around enhancing net-

ork security with software solutions. Table 1 summarizes

he comparison of DPX and the SDN switch extension and

rogrammable-switch-based solutions.

Network function control Prior research explores the possibil-

ty of controlling network functions using middleboxes. Cloud-

atcher (Shin and Gu, 2012) uses OpenFlow to detour net-

ork flows to physical network devices in dynamic cloud net-

orks, where the security functions are pre-installed. SIMPLE

azi et al. (2013) and Gupta et al. (2018) propose the efficient

raffic steering for composing service chaining with middleboxes.

hereas these systems streamline NFV deployment, they do not

ddress the performance degradation challenge due to the need for

raffic steering.

Software switches Existing works on software switches mostly

ocus on improving system performance (Honda et al., 2015; In-

el, 2022a; Pfaff et al., 2015). Popular software switch implemen-

ations are Open vSwitch (2022) ; Pfaff et al. (2015) and mSwitch

 Honda et al., 2015). They aim to achieve high-performance by sup-

orting a large number of virtual ports. CoMb (Sekar et al., 2012)

onsolidates network middleboxes into a single physical machine

o reduce capital expenses and device sprawl. It also designs con-

olidated protocol parsers to optimize and reduce repeated packet

arsing steps between diverse network functions.

Offloading network functions Offloading network functions into

 low-level network stack (e.g., SmartNICs or FPGA) is being

sed popularly in data centers to achieve high-performance. Ac-

elNet (Firestone et al., 2018) proposes the FPGA-based Smart-

IC to handle mass bandwidth on their network center. Mobius

 Park and Shin, 2021) suggests a rich network policy handling way

n the hardware-based network data plane. Reinhardt (Park et al.,

021) proposes a reconfigurable FPGA architecture tailored for pay-

oad inspection. Inspired by those projects, we aim to design the

xtended data plane (i.e., switch) that specifically addresses the

eeds of security functions and reduces latency associated with

ervice chains.

Security with SDN switch extension Like our idea, several works

ropose an extended SDN data plane to support rich functions

rom an OpenFlow switch. OFX (Sonchack et al., 2016a) is an

penFlow extension framework which enables an security applica-

ion to be loaded into a switch at runtime. NEWS (Mekky et al.,

017) suggests an extended SDN architecture to handle packets

hrough modified flow tables on a switch, called app tables. Avant-

uard (Shin et al., 2013) proposes a secure OpenFlow switch ar-

hitecture that supports the connection migration and actuating

riggers to enhance the scalability and responsiveness of OpenFlow
able 1

omparison of DPX and the existing works (
√

Fully applied, � Partially applied, ✗ Not app

Work Purpose No T

Poseidon (Zhang et al., 2020) DDoS mitigation
√

Jaqen (Liu et al., 2021) DDoS mitigation
√

Ripple (Xing et al., 2021) DDoS mitigation
√

Avant-Guard (Shin et al., 2013) DDoS mitigation
√

QoSE (Park et al., 2016) Traffic steering optimization ✗

SIMPLE (Qazi et al., 2013) Traffic steering optimization ✗

NEWS (Mekky et al., 2017) Dataplane extension
√

OFX (Sonchack et al., 2016a) Dataplane extension �

DPX Dataplane extension
√

5
witches. QoSE (Park et al., 2016) proposes a data plane module

or providing security features as distributed NFV. Whereas those

orks are similar to us, DPX incorporates all the security functions

he existing works propose and supports additional advanced ones,

ncluding network functions.

Security with programmable switches Recently, diverse switch-

ative solutions have been presented by utilizing programmable

ata planes (e.g., P4-enabled switches). For example, Posei-

on (Zhang et al., 2020) and Jaqen (Liu et al., 2021) propose a

witch-native approach for mitigating volumetric DDoS attacks,

everaging the reconfigurability and processing power of switch de-

ices. iMap (Li et al., 2022) proposes a network scanner that per-

orms large-scale scanning in a fast and scalable manner. While

he idea is similar to our work, their solutions require pro-

rammable ASICs (e.g., Intel Tofino Intel, 2022b) and a domain-

pecific language (e.g., P4 Bosshart et al., 2014) different from

penFlow. Considering that SDN is still widely used in data cen-

ers (Ferguson et al., 2021), WAN (Hong et al., 2018), and enterprise

etworks (BlueCat Networks, 2022), DPX can be readily deployed

o existing SDN switches. Also, the programmable-switch-based so-

utions do not support payload inspection, while DPX does so.

. System design

In this section, we present the design of DPX . We first provide

 DPX architectural overview, and introduce DPX actions that are

esigned for supporting security functions from SDN switches. We

hen introduce action clustering, a novel technique to relax man-

gement complexity of the extended security actions.

.1. DPX Overview

Fig. 5 illustrates the overall design of DPX and its workflow.

PX follows the OpenFlow protocol paradigm (OpenFlow, 2022)

hat handles network packets using the match-action interface of

n SDN switch. Thus, DPX extends the OpenFlow implementation

f SDN switches to incorporate security actions as an additional set

f OpenFlow actions. By doing so, the applications running on the

ontroller can enforce security functions on network traffic to DPX

ata-plane via the extended OpenFlow protocol.

In DPX , security functions are defined in terms of one or more

ctions that the data plane provides to handle network traffic

e.g., packet forwarding, drop, and modification). For instance, in

he flow table of Fig. 5 (b), the actions for Flow_A will moni-

or network flows to detect whether flows send/receive more than

0 0 0 Mbps threshold, and if it detects this situation DPX will con-

uct pre-defined operations (e.g., generate alert or drop packets).

n addition, the actions for Flow_B will perform multiple net-

ork security functions (i.e., vertical scan detector, session moni-

or, and deep packet inspector) to the corresponding traffic. Since

PX builds on top of the OpenFlow protocol, security actions can

e enforced with the existing OpenFlow FLOW_MOD commands

nd any other OpenFlow actions can be integrated with DPX
lied.) .

raffic detouring Compatibility with SDN Payload inspection

✗ ✗

✗ ✗

✗ ✗ √

✗ √

✗ √

✗ √

✗ √

✗ √ √

J. Kim, Y. Kim, V. Yegneswaran et al. Computers & Security 124 (2023) 102976

Fig. 5. An illustration of DPX design and processing workflow.

4

a

i

u

s

a

w

f

t

i

t

a

b

fl

a

p

u

t

l

d

e

p

p

r

s

f

a

w

A

c

n

l

n
i

m

c

t

d

(

a

p

o

l

t

d

a

p

f

D

m

e

m

p

a

f

T

p

m

a

.2. DPX actions

A DPX action operates in a similar way to the match-and-

ction sequence of OpenFlow; after looking up a matched flow rule

n flow tables for incoming packets (i.e., parsing packets, looking

p flow entries corresponding to the packets, and updating flow

tatistics), DPX executes the actions field in the matched rule. If an

ction field includes (a) security action(s) during execution, DPX

ill trigger a corresponding DPX action block to provide security

unctions for matched flows. As shown in Fig. 5 (a), the blocks in

he security action comprise data section, inspection logic , and pol-

cy handler . With those blocks, the DPX performs the following

hree stages:

First, DPX reactively/proactively updates its entries with keys

ccording to security action types. The data section is responsi-

le for keeping the context of security actions. It consists of (1)

ow_key , the packet-level metadata used for indexing flow tables,

nd (2) flow_stats , the statistical data of each flow entry (e.g.,

acket counts, bytes). For example, the action for DoS detection

pdates the size of an incoming packet and its arrival time, and

he action for scanning detection updates the last access time and

ist of accessed TCP/UDP ports. On the other hand, the action for

eep-packet inspection (DPI) requires a pattern list to match its

ntries with packet payloads. For this, DPX provides a user-defined

attern list to the data section at initialization.

Second, DPX performs the inspection logic, which refers to the

acket inspection operations that need to be executed for a secu-

ity function. For instance, a DoS detector calculates bps (bits-per-

econd) of a flow using the metadata and statistical information

or this flow (i.e., size and time of packets in its data section). Also,

 scanning detector counts how many ports are hit within a time

indow using the last access time and port list in the data section.

fter executing the inspection logic, its result is compared with the
6
ondition value set by action’s parameters to decide whether or

ot packets violate the security specification.

Third, if a security violation is detected by the inspection

ogic, DPX handles packets according to one of four policies: (1)

eglect which ignores the events and processes packets follow-

ng a normal switch sequence; (2) alert which sends an alert

essage to a controller with a switch ID (i.e., datapath ID), physi-

al port number associated, the reason for event occurrence (event

ype code), reference features (e.g., the current bps), raw packet

ata, and a cluster ID (We will describe this in the next section.);

3) discard which terminates the packet processing sequence

nd drops detected packets; and (4) redirect which forwards

ackets to alternative destinations (e.g., honeypot) instead of the

riginal destination specified in a flow rule.

Network operators can configure DPX actions via parameters

ike common OpenFlow actions (e.g., set_nw_src(10.0.0.1)
hat modify the source IP address to 10.0.0.1). The parameters are

efined as two types: feature variables and policy . The feature vari-

bles indicate trigger conditions or configuration values. For exam-

le, the bps threshold and the pattern list are the feature variables

or the DoS detector and the deep-packet inspector, respectively.

epending on the type of security actions, there may be one or

ore feature variables. The policy dictates how the detected pack-

ts are handled. Specifically, operators can specify the DDoS attack

itigation policy “if 10 0 0 Mbps traffic is detected, redirect it to

ort 2” as “sec_dos(mbps = 1000,policy = redirect:2) ”.

DPX supports six security actions (see the top of Table 2). Each

ction has different f eature variables related to its purpose, and the

eature variables must be set when a security action is installed.

he policy can be omitted, and an alert is set as default when the

olicy is not set. As mentioned before, a DPX action consists of

ultiple packet processing blocks. Thus, it is possible to compose

 new action by combining different blocks. Therefore, more func-

J. Kim, Y. Kim, V. Yegneswaran et al. Computers & Security 124 (2023) 102976

Table 2

DPX actions overview.

Function Action name Purpose Description example

Feature variable

Deep Packet

Inspector

sec_dpi Find a pattern in a packet payload. sec_dpi(rule = “pattern_list.txt”,

policy = alert) - rule: The path of a rule file containing patterns

DoS Detector sec_dos Detect a bandwidth exceed by mbps threshold. sec_dos(mbps = 1000, policy = alert)
- mbps: The bandwidth threshold to detection

Anomaly Detector sec_anomaly Detect a change rate of bandwidth within the buffer interval. sec_anomaly(delta = 200, buf = 1024,

policy = alert) - delta: The percentage of the change rate threshold for

bandwidth

- buf: The packet buffer length to recognize the change rate

Vertical-Scanning

Detector

sec_vscan Count how many TCP/UDP ports are hit within a time

window.

sec_vscan(ports = 1000, time = 5,

policy = alert)
- ports: The count threshold of hit ports

- time: The time window size for the ports count

Horizontal-

Scanning Detector

sec_hscan Count how many hosts for the specific TCP/UDP port are hit

within a time window.

sec_hscan(hosts = 100, port = 80, time = 5,

policy = alert)
- hosts: The count threshold of hit hosts

- time: The time window size for the hosts count

- port: The target TCP/UDP port number to monitor

Session Monitor sec_session Trace TCP sequences and count invalid connections. sec_session(count = 100, time = 10,

policy = alert) - session: The count threshold of invalid sessions

- time: The time window size for the session count

Load-Balancer srv_load Distribute network traffic across a number of ports. srv_load(ports = 1,2,3,4, policy = neglect)
- ports: The target output port list to distribute traffic

Network Address

Translator (NAT)

srv_nat Remap IP addresses into another one and forward to a port. srv_nat(ip = ‘10.0.0.1’, outport = 1,

policy = neglect) - ip: The IP address to change for a flow

- output: The target output port

Address Resolution

Protocol (ARP)

srv_arp Map IP addresses to hardware addresses. srv_arp(arp = “10.0.0.1-aa:bb:cc:dd:ee:ff,

10.0.0.2-01:02:03:04:05:06”, policy = neglect) - arp: The list of IP to MAC address mappings.

t

c

s

t

o

o

4

t

F

c

r

t

T

a

F

t

a

t

t

c

c

c

b

s

d

T

b

f

t

t

t

p

a

r

a

o

c

c

1 Note that some OpenFlow switches still do not support the multi-table feature

at the time of writing Pica (2022) .
ions beyond the six security actions can be easily designed in the

urrent DPX architecture. For example, network operators can de-

ign middlebox functions, such as load-balancer, network address

ranslator, and address resolution protocol handler (see the bottom

f Table 2).

Benefits of DPX actions DPX actions provide significant benefits

ver traditional middlebox or SDN/NFV-based security solutions:

1) Simplified policy management. DPX actions enable to achieve op-

erational efficiency by eliminating the need for installing ad-

ditional flow rules for traffic steering. Thus, a network opera-

tor can focus on the management of existing flow rules (e.g.,

whether normal traffic reaches its destination).

2) Simplified service chaining. DPX actions enable to compose a ser-

vice chain in a simplified manner. Specifically, a single line of

flow rule is sufficient to represent a complex service chain by

enumerating multiple actions. For example, suppose we con-

figure a service chain for a DoS detector, anomaly detector,

vertical-scanning detectors, session monitor, and payload in-

spector of a flow destined to a 10.0.0.1 host. In that case, it can

be expressed as a single rule as follows:

Flow :..., nw _ dst = 10.0.0.1,..., actions = sec _ dos (...), sec _ anomaly

(...), sec _ vscan (...), sec _ session (...), sec _ dpi (...),...
3) Simplified processing sequence. DPX enables to improve network

performance by minimizing packet processing steps for secu-

rity functions. As depicted in Fig. 6 , processing an incoming

packet generally requires four steps (i.e., parse packets, look up

flow tables, update flow stats, and execute actions). Whereas

the NFV-based approach requires to perform this twice due to

the traffic steering through the NFV node (i.e., Flow_A), DPX

only needs a single processing sequence because a switch can

fully support security functions (i.e., Flow_B).

.3. Action clustering

Although DPX actions eliminate the need for traffic steering,

here remains an additional challenge due to the limited Open-
7
low design. When configuring rules to implement advanced se-

urity actions (e.g., counting the number of packets for selected

ules), it is common to utilize the OpenFlow multi-table fea-

ure, 1 allowing a switch to compose packet processing pipeline.

o illustrate this, let us consider Fig. 7 where a network oper-

tor wants to design a DoS detector by aggregating packets of

low_A , B and C . Starting from the default table (Table 0),
hose flows are redirected to the Table 1 to execute the sec_dos
ction, and then forwarded to the Table 2 to be separated into

he remaining service chains. Whereas it enables network opera-

ors to design service chains within a switch, operators should take

are of installing rules in multiple tables, increasing management

omplexity.

In order to address this problem, we propose a novel technique

alled action clustering . Its purpose is to simplify rule complexity

y merging the DPX actions into few synthetic rules. Thus, the

ame DPX action can be executed across flow rules without re-

undant packet processing, i.e., flow aggregation and separation.

his way, both the number of flow rules and processing time can

e significantly reduced than the case when OpenFlow multi-table

eatures are used.

Fig. 8 illustrates the workflow of action clustering. Each DPX ac-

ion is assigned a cluster ID that groups multiple DPX actions into

he same cluster. DPX then builds the clustering map per action

ype and maintains the aggregated data per cluster ID. For exam-

le, Flow_A and Flow_C have the same action type sec_dos
nd cluster ID 10 . When the packets of Flow_A and Flow_C ar-

ive at a switch, the aggregated statistics (e.g., bytes per second)

re updated in the clustering map of the sec_dos action. On the

ther hand, if a DPX action runs standalone without clustering, its

luster ID is set to a unique random ID (see Flow_B). Also, DPX

onsiders a { action type , cluster ID } pair as a unique key;

J. Kim, Y. Kim, V. Yegneswaran et al. Computers & Security 124 (2023) 102976

Fig. 6. Inefficient NFV packet processing sequence.

Fig. 7. An example of service chaining with the OpenFlow multi-table feature.

Fig. 8. An example of service chaining using DPX action clustering.

t

c

s
d

m

e

d

t

c

a

4

s

a

r

t

c

l

o

hus, the actions having the same cluster ID are differentiated ac-

ording to its type, e.g., the sec_dos action for Flow_A/C and

ec_scan action for Flow_D . The action clustering operates in-

ependently for all actions in a flow rule (see Flow_E).
The cluster ID is used as the hash key to lookup the clustering

ap, and the data referenced by the cluster is updated and deliv-

red to the inspection logic. The data section is shared between

ifferent flows so that the input of one flow can affect the inspec-

ion result of another flow within the same cluster. Therefore, we

an detect not only the abnormal behavior of aggregated flows but

lso individual ones.
8

.4. Advanced action clustering

To make the action clustering more flexible in practice, DPX

upports two additional features, inconsistent-parameter clustering

nd multi-clustering .

Inconsistent-parameter clustering In some circumstances, the pa-

ameters of actions within the same cluster can be different. For

his case, we design inconsistent-parameter clustering, which exe-

utes a processing logic with the parameter of each action regard-

ess of the cluster it belongs. The following flow rules are examples

f inconsistent-parameter clustering:

J. Kim, Y. Kim, V. Yegneswaran et al. Computers & Security 124 (2023) 102976

Fig. 9. Design of global action clustering.

...

.

c

S

s

t

d

m

s

h

l

F

t

t

c

f

r

1

T

F
p

o

1

4

D

t

d

e

I

t

a

i

g

b

t

i

d

Table 3

An example of global action clustering for detecting DDoS attacks.

sec_dos(gid = n ,mbps = 10 0 0) Switch A Switch B Switch C

Local 300 350 450

Global 800 750 650

Local/Global ratio 0.375 0.466 0.692

g
o

i

t

t

4

b

i

(

S

o

c

i

s

s

(

t

t

I

4

f

o

a

c

e

a

m

D

a

(

m

S

r

i

Flow _ A : actions = sec _ vscan (ports = 10 0 0,time = 5 , id = 10),
Flow _ B : actions = sec _ vscan (ports = 500,time = 3 , id = 10),..
The sec_vscan action detects a vertical scanning attack by

ounting how many ports are hit within a specific time window.

ince the sec_vscan actions belong to the same cluster, they

hare the same data that contains the number of port hits and

he last arrival time of each port. However, each sec_vscan has

ifferent parameters for detecting scanning attacks, meaning that

ultiple security policies are applied to the same data. For in-

tance, let us suppose that the current aggregated number of port

its is 700 during the last three seconds and 900 during the

ast five seconds. In that case, DPX only triggers an alert against

low_B , not Flow_A .
Multi-clustering A DPX action can be assigned to multiple clus-

ers for computing different statistics. When DPX executes an ac-

ion containing multiple cluster IDs, it updates the data for all the

lusters. Thus, the multi-clustering allows network operators to en-

orce multiple security policies for a single flow. The following flow

ules are an example.

Flow _ A : actions = sec _ dos (mbps = 1000 , id = 10),...

Flow _ B: actions = sec _ dos (mbps = 500 , id = 10,20),...

The sec_dos action for Flow_B is assigned two cluster IDs,

0 and 20, while Flow_A is only assigned in one cluster ID 10.

his implies that the action of Flow_B monitors mbps along with

low_A . By doing so, network operators can set complex security

olicies such as “Flow_A and B should not exceed 10 0 0 Mbps”

r “Flow_B should not exceed 500 Mbps (But, Flow_A can reach

0 0 0 Mbps.)”.

.5. Global action clustering

As DPX operates security functions on each switch locally,

PX has difficulty in providing network-wide security solutions

hat require global coordination across a network (e.g., botnet-

riven DDoS attacks). To address this challenge, we design a data-

xchange protocol between switches, called global action clustering .

t aims to achieve network-wide policy enforcement by exchanging

he data section of a DPX action.

Fig. 9 illustrates the design of global action clustering. Each DPX

ction can optionally have a global cluster ID (i.e., gid), group-

ng DPX actions of different switches into the same cluster. The

rouped switches broadcast their local data through the cluster

roadcaster module on the controller so that they can synchronize

he data with each other. The data broadcast from other switches

s managed in the global cluster map of the data section, indepen-

ently of the local cluster map (see Fig. 10). If an action includes a
9
id , DPX looks up not only the local cluster map, but the global

ne to execute the inspection logic.

Table 3 is an example to show how the global clustering works

n the topology of Fig. 9 under DDoS attacks. Let us suppose that

he switch A, B and C belong to the global cluster n and want

o detect 10 0 0 Mbps traffic. Each switch receives 300, 350, and

50 Mbps of traffic, and these data are broadcast to the neigh-

or switches in the cluster. The global cluster value of each switch

s the sum of the local values of other two switches, i.e., 800

350 + 450), 750 (300 + 450) and 650 (300 + 350), respectively.

uppose the sum of local and global values exceeds the thresh-

ld (i.e., 10 0 0). In that case, its policy is applied when a lo-

al/global ratio exceeds 0.5, meaning that the switch is receiv-

ng more traffic than the other two switches. In the example, all

witches exceed 10 0 0 Mbps, so DPX checks its local/global ratio;

witch A is 0.375 (30 0/80 0); B is 0.466 (350/750); and C is 0.692

450/650). Therefore, only switch C executes inspection logic for

his case. For example, if the policy of switch C is alert , the con-

roller receives an alert message from switch C with the global

D n .

.6. Programming DPX applications

DPX helps network operators design security policies easily by

ollowing the OpenFlow programming convention. Thus, network

perators can apply DPX on their SDN networks without learning

 new language. The only additional bit of information is the spe-

ific parameters required for certain DPX actions. By extending the

xisting OpenFlow protocol to utilize DPX features, network oper-

tors can easily develop DPX applications for automatic security

anagement with minimal effort.

Fig. 11 shows an example DPX application, which deploys a

oS detector and DPI function to a switch by appending sec_dos
nd sec_dpi actions into an OpenFlow FLOW_MOD message

lines 1–7). When the switch detects a packet whose pattern is

atched with pattern.txt for the alert policy, it sends the

DN controller an OpenFlow message. Then, the DPX application

esponds with suitable reactions to abnormal behaviors by invok-

ng its event handlers (lines 8–13).

J. Kim, Y. Kim, V. Yegneswaran et al. Computers & Security 124 (2023) 102976

Fig. 10. Global and local cluster maps.

Fig. 11. DPX security application pseudo code.

Fig. 12. Testbed and operational scenario of DPX use cases.

5

5

(

b

h

c

p

r

t

a

t

n

s
t

u

t

s

t

r

d

n

s
d

u

N

T

t

. Security use cases

This section presents various security use cases of DPX .

.1. Security inspection

To highlight operational use-cases of DPX , we set up a testbed

shown in Fig. 12), where a DPX switch connects two hosts (one

enign and one malicious) and a server (hosting FTP service, which

as a buffer-overflow vulnerability). The switch is connected to a

ontroller running DPX security applications. The malicious host

erforms three different attacks: (i) DoS, (ii) port scanning, and (iii)

emote exploit against the FTP server. Here, we will present how

he DPX switch analyzes ongoing network traffic, detects attacks,

nd reports to the controller. We assume that a network adminis-

rator has pre-configured the security applications for reacting to

etwork attacks.
10
Denial of service attacks In this example, we employ the

ec_dos action to alert when the traffic surpasses 500 Mbps and

he malicious host sends over 1 Gbps traffic to the FTP server

sing hping3 (HPING3, 2022). When the sec_dos action iden-

ifies the attack (i.e., high-volume traffic), it sends an alert mes-

age including current packet-rate information to the DPX con-

roller (Fig. 13 (a)). Then, the DPX application installs a new flow

ule to block the attack traffic in DPX . Hence, most of the traffic is

ropped, and the DoS attack is mitigated as shown in Fig. 13 (b).

Port scanning DPX can detect horizontal and vertical scan-

ing via its scan detector actions, such as sec_vscan and

ec_hscan . In addition, the sec_session action can help in

etecting stealthy scanning attacks. In this example, we config-

re the sec_hscan with 50 hosts and a 10-second time window.

ext, the malicious host generates horizontal scans directed at port

CP/21 using nmap (NMAP, 2022). When DPX successfully detects

he horizontal scanning, DPX sends an alert message including

J. Kim, Y. Kim, V. Yegneswaran et al. Computers & Security 124 (2023) 102976

Fig. 13. Alert messages & block results for various use-case attacks.

c

a

s

t

W

m

t

f

i

t

i

t

t

p

b

s

a

c

a

t

t

a

(

w

a

f

c

b

O
s

d

t

c

a

s

t

t

a

a

a

t

a

5

p

o

t

l

f

(

T

m

w

s

R

i

Q

m

t

i

r

i

s

fi

o

t

t

l

∑

∑

∑

urrent host count to the controller (Fig. 13 (c)). Then, the DPX

pplication installs a new flow rule to block the attack traffic, as

hown in Fig. 13 (d).

Remote exploit We consider the case where the malicious host

ries to exploit the vulnerability of ProFTPD to get a remote shell.

e reproduce this attack via Metasploit (Metasploit, 2022), the

ost popular penetration testing tool, and set the sec_dpi ac-

ion with 100 rules including the attack pattern at 99th. After per-

orming the attack, the sec_dpi action detects the attack pattern

n the packet payloads and issues an alert message to the con-

roller. The alert indicates the corresponding pattern number that

s matched in the pattern list (Fig. 13 (e)). Then, the DPX applica-

ion installs a new flow rule to block the attack traffic, preventing

he malicious host from acquiring a remote shell through the ex-

loit sequence, as shown in Fig. 13 (f).

Cooperation with middleboxes DPX can cooperate with middle-

oxes using a redirect policy so that middleboxes can process

uspicious connections. For example, the network in Fig. 12 runs

 honeypot with security actions on the DPX switch. The se-

urity actions have the redirect policy, so benign connections

re forwarded to the original destination, but suspicious connec-

ions are transmitted to the honeypot. This cooperation facili-

ates the implementation of other network security systems, such

s reflectornets (Shin et al., 2016), and Moving Target Defense

MTD) (Kampanakis et al., 2014).

Security control solution Since DPX is designed to be compatible

ith OpenFlow (OF), a security application can be implemented on

 controller by combining the capability of OF and DPX security

eatures. Fig. 14 is the example application that is built on the POX

ontroller. This application collects information about the switches

y requesting OF statistics messages, such as OFPC_FLOW_STATS ,
FPC_TABLE_STATS and OFPC_PORT_STATS , and monitors the

tatus of deployed security actions through the DPX security han-

ler. Therefore, by using the collected information, it can display

he direction and amount of traffic between each switch and the

urrent security status of switches. If a security violation occurs,

n administrator can establish a security policy based on the ob-

erved network conditions. For example, in the case of Fig. 14 ,

he sec_anomaly action of the switch s3 alerts that current

raffic-level is 285% higher than usual. The administrator could an-

lyze the cause of this alert from the displayed traffic information,

nd determine that the switch s4 is currently generating a large

mount of traffic to s3 . As a result, the administrator can block
b

11
raffic for s4 to s3 , or deploy stricter security actions to defend

gainst future attacks.

.2. Resource-aware action deployment

Since DPX operates on OF switches, DPX can be rapidly de-

loyed anywhere in an SDN network without imposing additional

verhead. Leveraging this benefit, we present a resource-aware ac-

ion deployment that adjusts a routing path considering network

oads. Fig. 15 describes its workflow.

On the control plane, the network monitor module monitors in-

ormation about link failures with Link Layer Discovery Protocol

LLDP) and bandwidth usage through the OF statistics messages.

his information is used in the security load distribution control

odule for conducting optimization to derive a new routing path,

here security functions are relocated. For example, in Fig. 15 , the

hortest path from the source (S) to the destination (E) is ‘R1-R6-

7’, but the routing path taking into account remaining resources

s configured to ‘R1-R2-R3-R5-R7’.

To conduct resource optimization, we leverage the formula of

oSE (Park et al., 2016), a distributed NFV system that finds opti-

al NFV node placement given current traffic amount. It assumes

hat the optimal resource distribution can be derived by calculat-

ng the amount of traffic allocated for each node.

We extend it to a general network model to find an optimal

outing path. The resource capacity of n th switch on a single rout-

ng path is denoted by r n , and an i th security action on the n th

witch is denoted by f n,i . For example, we mark f 2 , 1 to denote the

rst security action on the second switch of a path. The movement

f traffic from a switch m to a switch n is marked by b m,n . When

he allocated traffic amount on f n,i is b n,i , the resource consump-

ion is marked by f r
n,i

(b n,i) . To this end, we formulate an integer

inear programming (ILP) as follows:

Maximize

n

∑

i

b n,i (1)

Subject to

i

f r n,i (b n,i) ≤ r MAX
n (2)

m

b m,n =

∑

o

b n,o (3)

 sum _ of _ input = b sum _ of _ out put (4)

J. Kim, Y. Kim, V. Yegneswaran et al. Computers & Security 124 (2023) 102976

Fig. 14. A simple security control application with DPX .

Fig. 15. Workflow of resource-aware action deployment.

p

o

a

t

o

s

f

n

D

c

6

a

w

6

o

(

s

p

v

s

o

t

T

e
p

b

2 Note that OVS is a software-based OpenFlow switch and it is widely employed

in data-centers and enterprise networks today.
The goal of the ILP is to derive maximum traffic amounts

er security action running on each DPX (1) . The traffic amount

f security actions must not exceed resource capacities (2) . The

mount of incoming traffic at switch n must be the same with

he amount of its outgoing traffic (3) . Similarly, the total amount

f incoming and outgoing traffic across a network must be the

ame (4) .

After the execution of the ILP, the remaining traffic amounts

or each security action are derived. DPX then chooses candidate

odes by referring to the administrator’s security policy. After that,

PX derives a routing path whose link cost is low by combining

andidate nodes.

. Implementation

To verify the feasibility of the DPX design principle, we develop

 prototype implementation of DPX in both software and hard-

are.
12
.1. Software-based DPX switch

We implement the software-based DPX switch with 6K lines

f C code based on the kernel datapath module of Open vSwitch

OVS) 2 v2.4.9 Open vSwitch (2022) ; Pfaff et al. (2015) . Fig. 16

hows how DPX is integrated with the OVS modules. When a

acket matched with the flow table comes to a switch, OVS in-

okes the execute_actions sequence with packet data (i.e.,

ocket buffer) and an action key. The action key enumerates a list

f actions that are executed for the matched packet, and each ac-

ion in the list is sequentially called by the execute_actions .
o enable DPX in this processing sequence, we have modified the

xecute_actions module of OVS to jump to the DPX entry

oint, the starting point for DPX security actions.

The DPX entry point will invoke a required security action

y forwarding the socket buffer to the security action block. The

J. Kim, Y. Kim, V. Yegneswaran et al. Computers & Security 124 (2023) 102976

Fig. 16. The software-based DPX datapath.

Fig. 17. Components and dataflow of the hardware-based DPX system architecture. The processing sequence includes the security action input selector, security action

modules and a policy handler.

s

t

p

t

b

r

t

t

w

T

i

o

s

O

a

fl

i

t

l

c

6

N

s

2

S

g

G

S

a

c

(

s

t

r

d

u

t

R

c

D

p

a

s
t

d
h

a

i

a

ecurity action block is the main function code block performing

hree stages described in Section 4.2 (i.e., update the data section,

erform the inspection logic, and impose the policy on detected

raffic). Since a security action is composed of a modular function

lock, network operators can easily add a new security feature by

egistering a new block to the DPX entry point.

When executing a security action, the DPX switch forwards

he socket buffer and the security instruction with its parame-

ers to the DPX entry point. The entry point receives a flow_key
ith stats and invokes a proper security action block with them.

hen, the security block updates the data section and performs the

nspection logic. Once a security block processes a packet with-

ut detection, the DPX switch repeats the execute_actions
equence until all actions in the action key (including common

penFlow actions) are processed.

The current version of the software-based DPX switch provides

ll features described in Table 2 and the total number of supported

ows with an action cluster is limited only by the memory capac-

ty of a host device. We have also extended the user-space of OVS

o allow parsing incoming messages from DPX applications and de-

ivering an event message from the kernel-space module to an SDN

ontroller.

.2. Hardware-based DPX switch

We implement the hardware-based DPX switch using the

etFPGA-SUME board, 3 an FPGA-based PCI Express board with four
3 Recently, NetFPGA-SUME has been widely used to prototype high-performance

ecurity devices, such as 100 Gbps IDS/IPS or network testing tools (Zilberman et al.,

014).

v

i

fl

s

13
FP+ 10 Gbps interfaces NetFPGA (2022) . To enable DPX , we mi-

rate the OpenFlow IP package of NetFPGA-10G board (NetFPGA

itHub Organization, 2012; Tatsuya Yabe, 2011) to our NetFPGA-

UME board and extend it to support DPX actions. We implement

 security processing sequence on the hardware-based DPX , and it

onsists of three key modules: (i) a security action input selector ,

ii) security action modules , and (iii) a policy handler (see Fig. 17).

The security action input selector is responsible for looking up

ecurity actions from the action key (Section 4.2) and forwarding

heir parameters to appropriate security action modules. All pa-

ameters are transferred through the wide data bus, and packet

ata is carried from the packet buffer to each security action mod-

le. A security action module is an independent entity that con-

ains a data section through own memory space (We use a Block-

AM in this prototype.). Therefore, as shown in Fig. 17 , all se-

urity action modules are executed in parallel at the same time.

ue to this parallel processing, we separately place the security

rocessing sequence in front of the OpenFlow action processor to

void conflicts with OpenFlow packet modification actions (e.g.,

et_nw_src , set_tp_src). Finally, the policy handler executes

he policies specified in security actions, i.e., neglect , alert ,
iscard , redirect (Section 4.2). The current version of the

ardware-based DPX switch provides the DoS detector with 1024

ction clustering slots and the DPI action with four action cluster-

ng slots, each of which can store 1024 patterns, respectively.

Enabling communication with host To transfer messages gener-

ted from the hardware-based DPX switch to a controller or vice-

ersa, we also implement host software based on the reference

mplementation of NetFPGA-SUME. Fig. 18 illustrates the work-

ow for message transfer between the switch hardware and host

oftware. They communicate through the device driver by reading

J. Kim, Y. Kim, V. Yegneswaran et al. Computers & Security 124 (2023) 102976

Fig. 18. Communication between the host software and switch hardware.

a

a

w

t

d

h

m

I

p

p

c

6

w

b

t

D

t

1

a

d

s

t

O

F

7

u

h

t

7

a

D

1

Fig. 19. The testbed for performance evaluation.

o

t

s

D

e

a

t

i

D

F

h

b

p

m

b

c

a

b

t

o

p

p

4 Note that we mark the number of rules at the suffix of DPI (e.g., DPI100).
nd writing registers on the NetFPGA-SUME. For example, when

n alert message is sent to a controller, the message handler

rites event information (e.g., event reason code, reference fea-

ures, packet data, and cluster ID) to a corresponding register. The

evice driver delivers these register values to the DPX message

andler in the host, and the message handler builds an OpenFlow

essage and sends it to the controller via the OpenFlow channel.

n an opposite case, when an OpenFlow message arrives to de-

loy a new flow rule with security actions, the OpenFlow message

arser writes them to the flow table registers to let the flow table

ontroller perform security actions.

.3. DPX controller

To assist network operators to program DPX applications easily,

e design DPX APIs for the POX controller (POX, 2022), a Python-

ased SDN controller. We implement the DPX event handler class

o receive DPX messages and a new Python module supporting

PX applications. We add around 500 lines of Python code to POX

o enable all DPX related functions. Finally, we use the OpenFlow

.0 vendor extension for communication between a DPX controller

nd DPX switches. Note that we choose POX and OpenFlow 1.0

ue to their simplicity for rapid prototype development and fea-

ibility evaluation. However, our design principles can be applied

o recent OpenFlow versions and modern SDN controllers, such as

NOS (Berde et al., 2014), OpenDaylight (Medved et al., 2014), or

loodlight Project Floodlight (0 0 0 0) .

. Performance evaluation

This section presents results from our system performance eval-

ation (specifically, throughput, latency, and computational over-

ead) as well as results that illustrate the benefit of DPX ’s flow-

able simplification.

.1. Test environment

The test environment (Fig. 19) consists of two hosts (i.e., h1
nd h2) and an NFV host with a datapath device that operates the

PX switch and the DPX controller. All host machines run Ubuntu

4.04 and have an Intel Xeon E5-2630@2.9 GHz processor, 64 GB
14
f RAM, and Intel X520-DA2 10GbE NICs. The datapath device uses

he NetFPGA-SUME board for running the hardware-based DPX

witch, or Open vSwitch v2.4.90 for running the software-based

PX switch. Although DPX is likely to be deployed in multi-switch

nvironments, we focus on a single switch benchmark because we

ssume that a bottleneck within a switch determines the overall

hroughput.

To evaluate DPX , we configure the DPX switch to forward all

ncoming packets from h1 to h2 after executing DPX actions (e.g.,

oS , DPI 4 , Chain). Then, we compare DPX to two different cases:

irst, we measure the performance of the native software and

ardware switches where no security solutions are deployed as

aseline (i.e., simple). For this, we configure them to forward

ackets from h1 to h2 without further processing. Second, we

easure the performance when packets traverse a single NFV node

efore arriving at h2 (i.e., NFV). Identical way to the experiment

onducted in Section 2.1 , the NFV node does nothing and immedi-

tely returns packets to the DPX switch. Note that we do not aim to

enchmark an individual DPX security action or verify their func-

ionality. Instead, we aim to assess (i) the performance overhead

f DPX over no security solution case and (ii) the performance im-

rovement over the NFV-based security solution.

For performance metrics, we measure (i) end-to-end through-

ut with Intel DPDK-Pktgen (Intel, 2022a) by generat-

J. Kim, Y. Kim, V. Yegneswaran et al. Computers & Security 124 (2023) 102976

Fig. 20. Throughput of the software-based DPX .

i

n
r

7

t

a

n

l

o

D

o

c

i

a

t

g

l

w

S

p

w

t

s

s

p

o

m

s

t

f

p

s

s

b

d

s

t

i

e

i

N

s

t

Fig. 21. Latency of the software-based DPX .

7

t

r

t

w

r

p

w

w

a

N

t

t

c

h

t

o

t

h

D

c

i

E

h

a

t

t

o

s

7

c

L
m

t

L
o

s

t

a

i

t

a

i

ng various sizes of packet bursts and (ii) latency with

ping (Nping, 2022) through the RTT of TCP packets containing

andom 256-byte payloads.

.2. Performance of software-based DPX

Throughput Fig. 20 illustrates the measured throughput from

he software-based DPX switch. We can see that most of the DPX

ctions (except for DPI) incur small overheads compared to the

ative software switch (i.e., simple). Specifically, they achieve at

east 90% throughput of the baseline in all packet sizes. In the case

f deploying a service chain (i.e., Chain) that comprises all the

PX actions except DPI, only a minor performance degradation is

bserved, similar to the overhead of Anomaly . Our analysis con-

ludes that the degradation is not the overhead by the chaining

tself but mainly the bottleneck by the worst-performing security

ction in the chain.

On the other hand, the DPI action only achieves 1 Gbps

hroughput when using 100 rules, and it is even degraded with the

rowth of rules (i.e., DPI500 and DPI1000). We discover that this

imitation is attributed to the overhead of pattern matching in soft-

are. For example, popular IDS software, such as Snort (2022) and

uricata (2022) , also achieve approximately 0.8–1.2 Gpbs in our ex-

eriments. It is difficult to directly compare the DPX DPI action

ith Snort and Suricata because of functional differences. However,

his result suggests that the DPI action could be utilized at edge

witches before forwarding to NFV nodes for more deep packet in-

pection.

Note that the NFV-based approach only achieves the through-

ut of 7.726 Gbps in the best case (i.e., 1514-byte). At first glance,

ne could argue that the throughput of the NFV-based approach

ust be similar to the baseline because traffic steering is based on

imple forwarding. However, we observe a performance degrada-

ion factor besides the bottleneck on the NFV host. It mainly stems

rom the fact that the software switch (e.g., OVS) processes two

acket streams concurrently. More specifically, when the host h1
ends a packet stream to the software switch, the NFV host also

ends a packet stream to the switch at the same time. Thus, the

andwidth capacity of the software switch can be exceeded easily,

egrading the overall throughput of the network.

Latency Fig. 21 illustrates CDF of the latency measured from the

oftware-based DPX . The latency of DPX actions is close to that of

he native software switch, including the DPI action. Further, there

s no significant overhead while constructing a service chain. For

xample, 99% of packets are processed in less than 1.5 ms, sim-

lar to the baseline. In contrast, the average latency of using the

FV node is 2.180 ms while it is 1.213 ms in the native software

witch. Thus, we could see that the NFV node incurs about twice

he baseline latency.
15
.3. Performance of hardware-based DPX

Throughput Fig. 22 (a) illustrates the throughput measured in

he hardware-based DPX switch. We can see that all DPX secu-

ity actions (i.e., DoS , DPI with 10 0, 50 0 and 10 0 0 rules) achieve

hroughput close to 10 Gbps. On closer inspection (Fig. 22 (b)),

hile DPX security actions incur throughput degradation (< 1%

eduction) in the worst case (64-byte packet size), the line-rate

erformance is achieved as the packet size increases. In addition,

hen configuring a service chain with DoS and DPI (i.e., Chain),
e find that there is no observable overhead because of the par-

llel processing provided by hardware-based DPX . In contrast, the

FV-based approach degrades the throughput significantly before

he 1024-byte packet size. In particular, it achieves only 1 Gbps of

hroughput at the 64-byte packet size. This degradation is mainly

aused by the bottleneck on the NFV host and processing over-

ead of the incoming and outgoing packet stream. Whereas this

hroughput degradation can be moderated through improvements

f a host machine, it is difficult to eradicate the bottleneck, given

hat many VMs are service-chained in real deployments.

Latency Fig. 23 illustrates the latency measured in the

ardware-based DPX switch. In most cases, the latency of when

PX actions are deployed is similar to the one measured the

ase where no security solutions are deployed (i.e., simple). It

s shown that 99% of packets are processed in less than 0.65 ms.

ven in the case of the service chains, there is no meaningful over-

ead in latency. This result is remarkable when we compare DPX

ctions with the NFV host. Although the NFV host directly returns

raffic without any additional processing, the latency is a factor of

wo or more times higher than DPX actions.

Computational overhead We also measure the computational

verhead of DPX actions, and it was negligible (1-2%) in compari-

on to the packet switching overhead.

.4. Performance of DPX network actions

To validate possibilities for further extension besides the se-

urity features, we evaluate DPX network actions, i.e., NAT ,
oad-balancer , and ARP proxy (see Table 2). The experi-

ents were performed on the software-based DPX . Fig. 24 shows

he throughput achieved for different message sizes on NAT and

oad-balancer actions. DPX network actions exhibit lower

verhead than security actions, nearly close to that of the native

oftware switch. This is because most network actions are rela-

ively lightweight than security actions; they only need to perform

 forwarding decision and a packet header manipulation. Fig. 25

llustrates the CDF of the latency measured when DPX network ac-

ions are deployed. In most cases, the latency of network actions

pproach the software switch. For example, 99% of packets includ-

ng the native software switch are processed less than 1.5 msec.

J. Kim, Y. Kim, V. Yegneswaran et al. Computers & Security 124 (2023) 102976

Fig. 22. Throughput of the hardware-based DPX .

Fig. 23. Latency of the hardware-based DPX .

Fig. 24. Throughput of DPX network actions.

Fig. 25. Latency of DPX network actions.

T

i

u

p

a

l

s

m

Fig. 26. Latency of ARP response.

Fig. 27. Leaf-spine topology.

a

h

t

7

B

f

d

c

P

c

s

a

b

e

a

o

a

herefore, the overhead can be considered as jitter and possibly

gnored.

We also evaluate the response time of the ARP proxy action

sing arping (ARping, 2022) and measured the RTT time of ARP

ackets using tcpdump . We compare ARP response times of the

ction to a normal ARP behavior between h1 and h2 . Fig. 26 il-

ustrates the measured ARP response time. The ARP proxy action

hows shorter response time about two or more time than the nor-

al ARP behavior. It is a natural result given that the ARP proxy
16
ction eliminates the need for delivering an ARP message to an end

ost. Hence, the response time decreases as much as the reduced

raveling path.

.5. Effectiveness of rule simplification

We evaluate the effectiveness of DPX in simplifying flow rules.

ecause the size of switch flow tables varies depending on various

actors, such as configurations, network policies, and traffic, it is

ifficult to make universal claims. Hence, we assume a specific use

ase and emulate it using Mininet (Lantz et al., 2010) and the

OX controller.

We reproduce a leaf-spine topology that is a two-layer data-

enter network architecture, and connected end hosts to each leaf

witch as depicted in Fig. 27 . One of the connected hosts is used as

n NFV host to operate network services. Then, we count the num-

er of required flow rules when all hosts can communicate with

ach other (i.e., using ping-all test without packet loss) including

 path to visit an NFV service chain, while increasing the number

f hosts. The flow rules are installed by the forwarding.l2_learning

pplication on the POX controller.

J. Kim, Y. Kim, V. Yegneswaran et al. Computers & Security 124 (2023) 102976

Fig. 28. The count of required rules.

e

h

N

1

1

h

t

r

l

n

t

l

o

8

c

t

l

t

s

c

b

p

h

t

w

T

r

t

g

c

o

p

w

c

t

t

o

b

b

n

b

e

w

F

b

O

p

w

a

s

t

a

a

t

r

t

9

n

f

D

i

h

r

t

D

t

c

n

p

n

i

d

i

t

D

v

D

c

i

C

i

M

c

r

S

m

d

t

F

e

A

t

As shown in Fig. 28 , the number of required flow rules for the

ntire network exponentially increases following the number of

osts and the length of the service chain to drive traffic to the

FV host and a service chain. When the number of leaf hosts is

0 and the length of the service chain is four, the network needs

620 rules for the communications between all hosts. On the other

and, DPX can provide a service chain without any detouring of

raffic. Thus, the network with DPX only requires minimal flow

ules that lead traffic to their destination directly, and it is equiva-

ent to when the length of the service chain is zero. Therefore, the

umber of required flow rules is significantly reduced regardless of

he length of the service chain. Specifically, even if the number of

eaf hosts is 10 and the length of service chain is four, the network

nly needs 540 rules to enable communications between all hosts.

. Discussion

In this section, we discuss related issues around DPX .

Performance benefit Overall, we could see that NFV service

hains induce a significant additional overhead while individual la-

ency varies. Given that NFV service chains in real networks are

ikely to be complex, the degradation will be more significant than

he experiments. In this respect, the DPX approach that provides

ecurity services from switches without traffic steering is benefi-

ial.

Management benefit We show that DPX can reduce the num-

er of flow rules and the action clustering allows complex security

olicies to be expressed in a simplified flow table. Today, many

osts exist on a network thanks to virtualization technology. Op-

imizing traffic engineering in terms of performance and security

hile considering NFV node placement requires complicated rules.

hus, simplifying security policies with such techniques will help

elieve the administrator’s management complexities.

Security analysis One could argue that an attacker may attempt

o leak confidential data (e.g., network policies) by performing fin-

erprinting attacks against SDN switches (Shin and Gu, 2013; Son-

hack et al., 2016b). In contrast to OpenFlow, the execution result

f DPX security actions is irrelevant to match fields, exposing no

rominent patterns to attackers. Also, as DPX is fully compatible

ith OpenFlow, all control packets including DPX secuirty actions

an be encrypted with TLS/SSL. Thus, even though an attacker cap-

ures packets, it is impossible to obtain valuable information.

Extensibility At first glance, it is difficult to add a new function

o DPX since its execution environment is in a switch where devel-

ping programs are restricted than usual. In the case of software-

ased DPX, it is designed as modular components; thus, DPX can

e simply extended by registering a new action block to the inter-

al interface (as mentioned in Section 6). In the case of hardware-

ased DPX built on FPGA, many companies, such as Microsoft, have

mployed FPGAs in their data centers (Firestone et al., 2018). Thus,

e believe that practitioners who have sufficient knowledge of
17
PGAs could implement additional components of the hardware-

ased DPX without obstacles.

Backward compatibility Network operators can still use existing

penFlow commands and rules because DPX is designed to sup-

ort the legacy OpenFlow protocol as well. One possible issue is

hen OpenFlow messages containing DPX actions are delivered to

 non-DPX switch. The switch could be put into an unpredictable

tate because the DPX actions will not be parsed correctly. To avoid

his, the DPX controller removes DPX actions from the message

nd runs a corresponding SDN application (e.g., a DDoS detector

pplication instead of the sec_dos action). This way, it is possible

o keep the backward compatibility while ensuring the functional

equirement at the cost of performance loss, i.e., control-plane bot-

leneck.

. Conclusion and future work

In this paper, we present the design and implementation of the

ew data plane architecture called DPX , a switch-native solution

or efficient yet high-performance security functions. We show that

PX simplifies composition of service chains and enables graceful

ntegration of security functions without associated detouring over-

eads. In addition, we propose action clustering, eliminating the

edundant packet processing within a switch by integrating mul-

iple actions into a single one. Our evaluation demonstrates that

PX achieves significantly improved throughput and latency than

he NFV deployment cases. The several use-cases show that DPX

an successfully prevent all network attacks while compressing the

umber of required flow rules.

We sketch a possible future work associated with the data

lane extension. Recently, programmable data planes have gar-

ered significant attention. Whereas they offer benefits over SDN

n terms of flexibility, several essential security functions, such as

eep packet inspection (DPI), are still not supported. Thus, extend-

ng the programmable switches to support advanced security func-

ions would be an interesting research topic.

ata availability

Extended data plane architecture for in-network security ser-

ices in software-defined networks.

eclaration of Competing Interest

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper.

RediT authorship contribution statement

Jinwoo Kim: Conceptualization, Methodology, Validation, Writ-

ng – review & editing. Yeonkeun Kim: Conceptualization,

ethodology, Writing – original draft. Vinod Yegneswaran: Con-

eptualization, Validation, Writing – review & editing. Phillip Por-

as: Conceptualization, Validation, Writing – review & editing.

eungwon Shin: Conceptualization, Formal analysis, Project ad-

inistration, Supervision, Funding acquisition, Writing – original

raft, Writing – review & editing. Taejune Park: Conceptualiza-

ion, Software, Formal analysis, Project administration, Supervision,

unding acquisition, Writing – original draft, Writing – review &

diting.

cknowledgment

This work was supported in part by National Research Founda-

ion of Korea (No. 2022R1C1C1006967).

https://doi.org/10.13039/501100003725

J. Kim, Y. Kim, V. Yegneswaran et al. Computers & Security 124 (2023) 102976

R

A

A

A

B

B

B

B

C

F

F

F

F

G

G

G

H

H

h

H

I

I

K

K

K

L

L

L

L

L

M

M

M

M
N

N

N

n

N

O
O

P

P

P

P

P

P

P

Q

S

S

S

S

S

S
S

S

S

T

X

eferences

nderson, J.W., Braud, R., Kapoor, R., Porter, G., Vahdat, A., 2012. xOMB: extensi-

ble open middleboxes with commodity servers. In: Proceedings of the Eighth

ACM/IEEE Symposium on Architectures for Networking and Communications
Systems, pp. 49–60 .

ntonakakis, M., April, T., Bailey, M., Bernhard, M., Bursztein, E., Cochran, J., Du-
rumeric, Z., Halderman, J.A., Invernizzi, L., Kallitsis, M., et al., 2017. Understand-

ing the mirai botnet. In: Proceedings of the 26th USENIX Security Symposium

(USENIX Security ’18), pp. 1093–1110 .

Rping, 2022. Ping destination on device interface by ARP packets. http://www.

habets.pp.se/synscan/programs.php?prog=arping .
erde, P., Gerola, M., Hart, J., Higuchi, Y., Kobayashi, M., Koide, T., Lantz, B.,

O’Connor, B., Radoslavov, P., Snow, W., et al., 2014. ONOS: towards an open,
distributed SDN OS. In: Proceedings of the Third Workshop on Hot Topics in

Software Defined Networking. ACM, pp. 1–6 .
lueCat Networks, 2022. Making the Case for SDN: A Real-World Example. https:

//bluecatnetworks.com/blog/making- case- sdn- real- world- example/ .
osshart, P., Daly, D., Gibb, G., Izzard, M., McKeown, N., Rexford, J., Schlesinger, C.,

Talayco, D., Vahdat, A., Varghese, G., et al., 2014. P4: programming protocol-in-

dependent packet processors. ACM SIGCOMM Comput. Commun. Rev. 44 (3),
87–95 .

remler-Barr, A., Harchol, Y., Hay, D., 2016. Openbox: a software-defined framework
for developing, deploying, and managing network functions. In: Proceedings of

the 2016 ACM SIGCOMM Conference, pp. 511–524 .
asado, M., Freedman, M.J., Pettit, J., Luo, J., McKeown, N., Shenker, S., 2007. Ethane:

taking control of the enterprise. ACM SIGCOMM Comput. Commun. Rev. 37 (4),

1–12 .
ayaz, S.K., Tobioka, Y., Sekar, V., Bailey, M., 2015. Bohatei: flexible and Elastic DDoS

Defense. In: Proceedings of the 24th USENIX Security Symposium (USENIX Se-
curity 15). USENIX Association, pp. 817–832 .

ayazbakhsh, S.K., Chiang, L., Sekar, V., Yu, M., Mogul, J.C., 2014. Enforcing net-
work-wide policies in the presence of dynamic middlebox actions using flow-

tags. In: Proceedings of the 11th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’14), pp. 543–546 .
erguson, A.D., Gribble, S., Hong, C.-Y., Killian, C., Mohsin, W., Muehe, H., Ong, J.,

Poutievski, L., Singh, A., Vicisano, L., et al., 2021. Orion: google’s software-de-
fined networking control plane. In: Proceedings of the 18th USENIX Symposium

on Networked Systems Design and Implementation (NSDI ’18), pp. 83–98 .
irestone, D., Putnam, A., Mundkur, S., Chiou, D., Dabagh, A., Andrewartha, M.,

Angepat, H., Bhanu, V., Caulfield, A., Chung, E., et al., 2018. Azure accelerated

networking: smartnics in the public cloud. 15th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 18), Renton, WA .

ember-Jacobson, A., Viswanathan, R., Prakash, C., Grandl, R., Khalid, J., Das, S.,
Akella, A., 2014. OpenNF: enabling innovation in network function control. ACM

SIGCOMM Comput. Commun. Rev. 44 (4), 163–174 .
reenberg, A., Hjalmtysson, G., Maltz, D.A ., Myers, A ., Rexford, J., Xie, G., Yan, H.,

Zhan, J., Zhang, H., 2005. A clean slate 4D approach to network control and

management. ACM SIGCOMM Comput. Commun. Rev. 35 (5), 41–54 .
upta, A., Habib, M.F., Mandal, U., Chowdhury, P., Tornatore, M., Mukherjee, B., 2018.

On service-chaining strategies using virtual network functions in operator net-
works. Comput. Netw. 133, 1–16 .

onda, M., Huici, F., Lettieri, G., Rizzo, L., 2015. mSwitch: a highly-scalable,
modular software switch. In: Proceedings of the 1st ACM SIGCOMM Sympo-

sium on Software Defined Networking Research. ACM, New York, NY, USA,

pp. 1:1–1:13 .
ong, C.-Y., Mandal, S., Al-Fares, M., Zhu, M., Alimi, R., Bhagat, C., Jain, S., Kaimal, J.,

Liang, S., Mendelev, K., et al., 2018. B4 and after: managing hierarchy, partition-
ing, and asymmetry for availability and scale in google’s software-defined WAN.

In: Proceedings of the 2018 Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM ’18), pp. 74–87 .

ping3, 2022. A network tool able to send custom TCP/IP packets and to display
target replies. http://www.hping.org/hping3.html .

wang, J., Ramakrishnan, K.K., Wood, T., 2014. NetVM: high performance and flexi-

ble networking using virtualization on commodity platforms. In: Proceedings of
the 11th USENIX Symposium on Networked Systems Design and Implementa-

tion (NSDI 14). USENIX Association, Seattle, WA, pp. 445–458 .
ntel, 2022. Intel DPDK: Data Plane Development Kit. http://dpdk.org .

ntel, 2022. Intel Tofino Series Programmable Ethernet Switch ASIC.
https://www.intel.com/content/www/us/en/products/network-io/

programmable-ethernet-switch/tofino-series.html .

ampanakis, P., Perros, H., Beyene, T., 2014. SDN-based solutions for moving target
defense network protection. In: Proceeding of IEEE International Symposium on

a World of Wireless, Mobile and Multimedia Networks 2014. IEEE, pp. 1–6 .
ang, M.S., Gligor, V.D., Sekar, V., et al., 2016. SPIFFY: inducing cost-detectability

tradeoffs for persistent link-flooding attacks. In: Proceedings of the Network and
Distributed Systems Security Symposium .

im, H., Feamster, N., 2013. Improving network management with software defined

networking. IEEE Commun. Mag. 51 (2), 114–119 .
antz, B., Heller, B., McKeown, N., 2010. A network in a laptop: rapid prototyping for

software-defined networks. In: Proceedings of the 9th ACM SIGCOMM Work-
shop on Hot Topics in Networks (HotSDN ’10). ACM, p. 19 .

ee, S., Kim, J., Shin, S., Porras, P., Yegneswaran, V., 2017. Athena: a framework for
scalable anomaly detection in software-defined networks. In: 2017 47th Annual

IEEE/IFIP International Conference on Dependable Systems and Networks (DSN

’17). IEEE, pp. 249–260 .
18
i, G., Zhang, M., Guo, C., Bao, H., Xu, M., Hu, H., Li, F., 2022. IMap: fast and scalable
in-network scanning with programmable switches. In: Proceedings of the 19th

USENIX Symposium on Networked Systems Design and Implementation (NSDI
’22), pp. 667–681 .

iu, G., Guo, S., Li, P., Liu, L., 2020. Conmidbox: consolidated middleboxes selection
and routing in SDN/NFV-enabled networks. In: 2020 IEEE International Parallel

and Distributed Processing Symposium (IPDPS). IEEE, pp. 946–955 .
iu, Z., Namkung, H., Nikolaidis, G., Lee, J., Kim, C., Jin, X., Braverman, V., Yu, M.,

Sekar, V., 2021. Jaqen: a high-performance switch-native approach for detecting

and mitigating volumetric DDoS attacks with programmable switches. In: 30th
USENIX Security Symposium (USENIX Security 21), pp. 3829–3846 .

cKeown, N., Anderson, T., Balakrishnan, H., Parulkar, G., Peterson, L., Rexford, J.,
Shenker, S., Turner, J., 2008. OpenFlow: enabling innovation in campus net-

works. In: Proceedings of ACM SIGCOMM Computer Communication Review .
edved, J., Varga, R., Tkacik, A., Gray, K., 2014. Opendaylight: towards a model–

driven SDN controller architecture. In: World of Wireless, Mobile and Multime-

dia Networks (WoWMoM), 2014 IEEE 15th International Symposium on a. IEEE,
pp. 1–6 .

ekky, H., Hao, F., Mukherjee, S., Lakshman, T., Zhang, Z.-L., 2017. Network function
virtualization enablement within SDNdata plane. In: IEEE INFOCOM, pp. 1–9 .

etasploit, 2022. Penetration Testing Software. https://www.metasploit.com/ .
am, J., Seo, J., Shin, S., 2018. Probius: automated approach for VNF and service

chain analysis in software-defined NFV. In: Proceedings of the Symposium on

SDN Research (SOSR ’18) .
etFPGA. NetFPGA-SUME board. https://netfpga.org/site/#/systems/1netfpga-sume/

details/ .
etFPGA GitHub Organization, 2012. Netfpga 10G openflow switch. https://github.

com/NetFPGA/NetFPGA-public/wiki/NetFPGA- 10G- OpenFlow- Switch .
map, 2022. Network Mapper - Security Scanner. https://nmap.org/ .

ping, 2022. An Open source network packet generation. https://nmap.org/nping/ .

pen vSwitch. An Open Virtual Switch. http://openvswitch.org/ .
penFlow, 2022. Open Networking Foundation (ONF). https://www.

opennetworking.org/sdn-resources/openflow .
ark, T., Kim, Y., Park, J., Suh, H., Hong, B., Shin, S., 2016. QoSE: quality of security

a network security framework with distributed NFV. In: Communications (ICC),
2016 IEEE International Conference on. IEEE, pp. 1–6 .

ark, T., Nam, J., Na, S.H., Chung, J., Shin, S., 2021. Reinhardt: real-time reconfig-

urable hardware architecture for regular expression matching in DPI. In: Annual
Computer Security Applications Conference (ACSAC ’21), pp. 620–633 .

ark, T., Shin, S., 2021. Mobius: packet re-processing hardware architecture for rich
policy handling on a network processor. J. Netw. Syst. Manag. 29 (1), 1–26 .

faff, B., Pettit, J., Koponen, T., Jackson, E., Zhou, A., Rajahalme, J., Gross, J., Wang, A.,
Stringer, J., Shelar, P., Amidon, K., Casado, M., 2015. The design and implementa-

tion of open vswitch. In: 12th USENIX Symposium on Networked Systems De-

sign and Implementation (NSDI 15). USENIX Association, Oakland, CA, pp. 117–
130 . https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/

pfaff.
ica. PicOS Support for OpenFlow 1.3. https://docs.pica8.com/display/PICOS2111cg/

PicOS+Support+for+OpenFlow+1.3 .
OX, 2022. Python Network Controller. http://www.noxrepo.org/pox/about-pox/ .

roject Floodlight,. Open Source Network Operating System. http://www.
projectfloodlight.org/floodlight/ .

azi, Z.A., Tu, C.-C., Chiang, L., Miao, R., Sekar, V., Yu, M., 2013. Simple-fying

middlebox policy enforcement using SDN. In: Proceedings of the ACM SIG-
COMM 2013 Conference on SIGCOMM. ACM, New York, NY, USA, pp. 27–38.

doi: 10.1145/2486001.2486022 .
ekar, V., Egi, N., Ratnasamy, S., Reiter, M.K., Shi, G., 2012. Design and implementa-

tion of a consolidated middlebox architecture. In: Presented as part of the 9th
USENIX Symposium on Networked Systems Design and Implementation (NSDI

12). USENIX, San Jose, CA, pp. 323–336 . https://www.usenix.org/conference/

nsdi12/technical-sessions/presentation/sekar .
hin, S., Gu, G., 2012. Cloudwatcher: network security monitoring using openflow in

dynamic cloud networks (or: how to provide security monitoring as a service in
clouds?). In: Network Protocols (ICNP), 2012 20th IEEE International Conference

on. IEEE, pp. 1–6 .
hin, S., Gu, G., 2013. Attacking software-defined networks: a first feasibility study.

In: Proceedings of the Second ACM SIGCOMM Workshop on Hot Topics in Soft-

ware Defined Networking, pp. 165–166 .
hin, S., Xu, L., Hong, S., Gu, G., 2016. Enhancing network security through software

defined networking (SDN). In: Proceedings of the 25th International Conference
on Computer Communication and Networks (ICCCN). IEEE, pp. 1–9 .

hin, S., Yegneswaran, V., Porras, P., Gu, G., 2013. Avant-guard: scalable and vigilant
switch flow management in software-defined networks. In: Proceedings of the

20th ACM Conference on Computer and Communications Security (CCS 2013) .

nort. Network Intrusion Detection System. https://www.snort.org/ .
onchack, J., Aviv, A. J., Keller, E., Smith, J. M., 2016a. Enabling practical software-

defined networking security applications with ofx.
onchack, J., Dubey, A., Aviv, A.J., Smith, J.M., Keller, E., 2016. Timing-based recon-

naissance and defense in software-defined networks. In: Proceedings of the
32nd Annual Conference on Computer Security Applications, pp. 89–100 .

uricata, 2022. An open source-based intrusion detection system (IDS). https://

suricata-ids.org/ .
atsuya Yabe, 2011. Openflow implementation on NetFPGA-10G design document.

ing, J., Wu, W., Chen, A., 2021. Ripple: a programmable, decentralized link-flood-
ing defense against adaptive adversaries. In: Proceedings of the 30th USENIX

Security Symposium (USENIX Security ’21), pp. 3865–3881 .

http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0001
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0002
http://www.habets.pp.se/synscan/programs.php?prog=arping
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0004
https://bluecatnetworks.com/blog/making-case-sdn-real-world-example/
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0006
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0007
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0008
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0009
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0010
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0011
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0012
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0013
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0014
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0015
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0016
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0017
http://www.hping.org/hping3.html
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0019
http://dpdk.org
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch/tofino-series.html
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0022
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0023
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0024
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0025
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0026
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0027
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0028
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0029
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0030
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0031
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0032
https://www.metasploit.com/
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0034
https://netfpga.org/site/#/systems/1netfpga-sume/details/
https://github.com/NetFPGA/NetFPGA-public/wiki/NetFPGA-10G-OpenFlow-Switch
https://nmap.org/
https://nmap.org/nping/
http://openvswitch.org/
https://www.opennetworking.org/sdn-resources/openflow
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0041
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0042
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0043
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/pfaff
https://docs.pica8.com/display/PICOS2111cg/PicOS+Support+for+OpenFlow+1.3
http://www.noxrepo.org/pox/about-pox/
http://www.projectfloodlight.org/floodlight/
https://doi.org/10.1145/2486001.2486022
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/sekar
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0050
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0051
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0052
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0053
https://www.snort.org/
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0056
https://suricata-ids.org/
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0059

J. Kim, Y. Kim, V. Yegneswaran et al. Computers & Security 124 (2023) 102976

Y

Y

Y

Y

Z

Z

ang, X., Han, B., Sun, Z., Huang, J., 2017. SDN-based DDoS attack detection
with cross-plane collaboration and lightweight flow monitoring. In: GLOBECOM

2017-2017 IEEE Global Communications Conference. IEEE, pp. 1–6 .
oon, C., Park, T., Lee, S., Kang, H., Shin, S., Zhang, Z., 2015. Enabling security func-

tions with SDN: a feasibility study. Comput. Netw. 85, 19–35 .
u, R., Xue, G., Kilari, V.T., Zhang, X., 2015. Network function virtualization in the

multi-tenant cloud. IEEE Netw. 29 (3), 42–47 .
u, T., Fayaz, S.K., Collins, M.P., Sekar, V., Seshan, S., 2017. Psi: precise security in-

strumentation for enterprise networks. NDSS .

hang, M., Li, G., Wang, S., Liu, C., Chen, A., Hu, H., Gu, G., Li, Q., Xu, M., Wu, J., 2020.
Poseidon: mitigating volumetric DDoS attacks with programmable switches. In:

Proceedings of the 27th Network and Distributed System Security Symposium

(NDSS ’20) .

ilberman, N., Audzevich, Y., Covington, G.A., Moore, A.W., 2014. NetFPGA SUME:
toward 100 Gbps as research commodity. IEEE Micro 34 (5), 32–41 .

Jinwoo Kim is an assistant professor in the School of
Software at Kwangwoon University, Seoul, South Korea.

He received his Ph.D. degree in School of Electrical En-
gineering and his M.S. degree in Graduate School of In-

formation Security from KAIST, and his B.S. degree from

Chungnam National University in Computer Science and
Engineering. His research topicminaly focuses on investi-

gating security issues with software defined networks and
cloud computing systems.

YeonKeun Kim is a Ph.D. student in the Graduate School

of Information Security at KAIST. He received his B.S. de-
gree in Computer Science Engineering at Ulsan National

Institute of Science and Technology (UNIST) in Korea. He

received his M.S. degree in Information Security from

KAIST. His research interests include network security is-

sues of IoT and embedding systems.

Vinod Yegneswaran received his A.B. degree from the
University of California, Berkeley, CA, USA, in 20 0 0, and

his Ph.D. degree from the University of Wisconsin, Madi-

son, WI, USA, in 2006, both in Computer Science. He is a
Senior Computer Scientist with SRI International, Menlo

Park, CA, USA, pursuing advanced research in network
and systems security. His current research interests in-

clude SDN security, malware analysis and anti-censorship
technologies. Dr. Yegneswaran has served on several NSF

panels and program committees of security and network-
ing conferences, including the IEEE Security and Privacy

Symposium.
19
Phillip Porras received his M.S. degree in Computer Sci-

ence from the University of California, Santa Barbara, CA,
USA, in 1992. He is an SRI Fellow and a Program Di-

rector of the Internet Security Group in SRI’s Computer
Science Laboratory, Menlo Park, CA, USA. He has partic-

ipated on numerous program committees and editorial

boards, and participates on multiple commercial company
technical advisory boards. He continues to publish and

conduct technology development on numerous topics in-
cluding intrusion detection and alarm correlation, privacy,

malware analytics, active and software defined networks,
and wireless security.

Seungwon Shin is an associate professor in the School

of Electrical Engineering at KAIST. He received his Ph.D.
degree in Computer Engineering from the Electrical and

Computer Engineering Department, Texas A&M Univer-
sity, and his M.S. degree and B.S. degree from KAIST, both

in Electrical and Computer Engineering. He is currently a

corporate vice president at Samsung Electronics, leading
the security team in the IT & Mobile Communications De-

vision. His research interests span the areas of Software-
defined networking security, IoT security, Botnet analy-

sis/detection, DarkWeb analysis and cyber threat intelli-
gence.

Taejune Park is an assistant professor at the Depart-

ment of Artificial Intelligence Convergence, Chonnam Na-
tional University, South Korea. He received B.S. in Com-

puter Engineering at Korea Maritime and Ocean Univer-
sity, South Korea, and M.S. and Ph.D. in information secu-

rity at KAIST, South Korea. His research interests focus on
network and IoT security and reliable/low-latency com-

munications

http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0060
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0061
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0062
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0063
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0064
http://refhub.elsevier.com/S0167-4048(22)00368-6/sbref0065

	Extended data plane architecture for in-network security services in software-defined networks
	1 Introduction
	2 Background and motivation
	2.1 Limitations of existing security solutions
	2.2 Our solution

	3 Related work
	4 System design
	4.1 DPX Overview
	4.2 DPX actions
	4.3 Action clustering
	4.4 Advanced action clustering
	4.5 Global action clustering
	4.6 Programming DPX applications

	5 Security use cases
	5.1 Security inspection
	5.2 Resource-aware action deployment

	6 Implementation
	6.1 Software-based DPX switch
	6.2 Hardware-based DPX switch
	6.3 DPX controller

	7 Performance evaluation
	7.1 Test environment
	7.2 Performance of software-based DPX
	7.3 Performance of hardware-based DPX
	7.4 Performance of DPX network actions
	7.5 Effectiveness of rule simplification

	8 Discussion
	9 Conclusion and future work
	Data availability
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowledgment
	References

