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Abstract—Path tracing tools, such as traceroute, are simple
yet fundamental network debugging tools for network operators
to detect and fix network failures. Unfortunately, adversaries can
also use such tools to retrieve previously unknown network topol-
ogy information which is key to realizing sophisticated Denial-
of-Service attacks, such as Link Flooding Attacks (LFAs), more
efficiently. Over the last few years, several network obfuscation
defenses have been proposed to proactively mitigate LFAs by
exposing virtual (fake) topologies that conceal potential bottleneck
network links from adversaries. However, to date there has been
no comprehensive and systematic analysis of the level of security
and utility their virtual topologies offer. A critical analysis is thus
a necessary step towards better understanding their limitations
and building stronger and more practical defenses against LFAs.

In this paper, we first conduct a security analysis of the
three state-of-the-art network obfuscation defenses. Our analysis
reveals four important, common limitations that can significantly
decrease the security and utility of their virtual topologies. Moti-
vated by our findings, we present EqualNet, a secure and practical
proactive defense for long-term network topology obfuscation
that alleviates LFAs within a network domain. EqualNet aims to
equalize tracing flow distributions over nodes and links so that
adversaries are unable to distinguish which of them are the most
important ones, thus significantly increasing the cost of perform-
ing LFAs. Meanwhile, EqualNet preserves subnet information,
helping network operators who use path tracing tools to debug
their networks. To demonstrate its feasibility, we implement a full
prototype of it using Software-Defined Networking (SDN) and
perform extensive evaluations both in software and hardware.
Our results show that EqualNet is effective at equalizing the
tracing flow distributions of small, medium and large networks
even when only a small number of routers within the network
support SDN. Finally, we analyze the security of EqualNet against
a wide variety of attacks.

I. INTRODUCTION

It is widely acknowledged that Distributed Denial of Ser-
vice (DDoS) attacks constitute one of the Internet’s major
threats today. In recent years, DDoS attacks have been aggra-
vated by the rise in the number of insecure Internet-of-Things
(IoT) devices connected to the Internet. In the literature, there
exist two main types of DDoS attacks: (i) those that target end-
hosts and servers (i.e., volume-based attacks) and (ii) those that

target the network infrastructure, also known as Link Flooding
Attacks (LFAs). Volume-based attacks are simple yet effective
attacks whose goal is to overload a server by sending a large
volume of traffic to it. One prominent example of such an
attack is the Mirai botnet [14], which affected many popular
websites such as Twitter or Netflix [1], [3], [2]. Fortunately,
these attacks can now be prevented to a large extent through the
use of Content Delivery Network (CDN) infrastructures [13].
Instead, LFAs aim to disrupt the network connectivity of as
many users as possible by congesting network links [42], [31].
The goal of adversaries is to inject a large amount of (separate)
flows such that they all simultaneously traverse a set of core
network links to overload them. For this purpose, adversaries
can use low-volume, separate flows that are indistinguishable
from normal traffic, making it difficult for network operators to
develop defenses to protect against LFAs. Note that adversaries
do not require knowledge of any information about the capacity
or the load of links and routers to conduct LFAs.

According to Meier et al. [37], executing a LFA against an
arbitrary link without knowing the network topology requires
five times more flows than when the adversary knows the
network topology. Similarly, the number of flows needed to
perform a LFA against a target link is orders of magnitude
higher when the topology is not known. Indeed, having some
knowledge of the network topology is an important prerequi-
site to execute effective, efficient and stealthy LFAs. This is
important for adversaries, as their goal is always to conduct
attacks that cause significant damage while minimizing the cost
of their attacks (i.e., the number of flows they have to create)
and the chances of being detected as much as possible.

At first glance, one could argue that keeping the network
topology confidential could be an effective mechanism for
network operators to increase the cost to perform successful
LFAs. This defense would align well with today’s Internet Ser-
vice Providers (ISPs) since they usually regard their network
topologies as confidential [25], [40]. However, researchers
have shown that existing path-tracing tools, such as traceroute,
can be used to reveal previously unknown ISPs’ network
topologies including their forwarding behavior and tracing
flow distributions, i.e., the number of traceroute flows received
by each router’s interface [30]. Hence, one can expect that
adversaries will apply these techniques to carry out more
efficient and effective LFAs [31].

Over the last few years, researchers have proposed several
reactive [36], [29], [47], [45], [20] and proactive countermea-
sures [37], [46], [43], [15] against LFAs. As reactive defense
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methods can only detect such attacks, we focus solely on
proactive countermeasures (i.e., network topology obfuscation
solutions) that mitigate such attacks by exposing a virtual
(false) network topology that conceals potential bottleneck
links and nodes while in some cases also attempting to
maintain the utility of the information provided by path tracing
tools. Note that proactive countermeasures do not prevent
LFAs, but rather significantly increase the cost to realize them,
thus also reducing the incentives to execute such attacks.

Despite their efforts, we discovered four important weak-
nesses in the three state-of-the-art network obfuscation solu-
tions which can significantly lower the security and utility of
their virtual topologies. Motivated by our findings, we propose
EqualNet, a novel proactive network topology obfuscation
defense that alleviates LFAs within an Autonomous System
(AS)1. The fundamental goal of EqualNet is to prevent adver-
saries who use path tracing tools from gaining any advantage
over blind (inefficient) LFAs executed without such tools. We
make the crucial observation that LFAs benefit from the fact
that some nodes and links in the network appear more than
others in the tracing responses obtained by adversaries. Equal-
Net aims to equalize the path tracing flow distribution over
network nodes and links, such that adversaries are convinced
that all nodes and links are equally “popular” (i.e., important)
in the network. Meanwhile, EqualNet maintains the utility of
the information collected by path tracing tools.

To demonstrate its feasibility, we implement EqualNet
using Software-Defined Networking (SDN) and conduct ex-
tensive evaluations both using software simulations and a
hardware testbed. Our evaluation shows that EqualNet is
effective at hiding the popularity of nodes and links in small,
medium and large networks at the cost of creating a reasonable
number of virtual nodes and while preserving the utility of path
tracing information. Overall, EqualNet allows for a significant
reduction of the topology leakage and hence increases the
cost of performing successful LFAs. Through experiments, we
demonstrate that EqualNet performs well even when only a
small number of routers support SDN. Finally, we show that
EqualNet can resist a variety of security attacks.

OUR CONTRIBUTIONS

• We analyze the three state-of-the-art proactive network
obfuscation defenses, namely NetHide [37], Trassare
et al.’s solution [43] and LinkBait [46]. This results in
the identification of four common weaknesses which
can be used to significantly lower the security and util-
ity of the virtual topologies they expose (Section III).

• We propose EqualNet, a novel proactive network ob-
fuscation solution that can mitigate LFA attacks within
an AS. EqualNet conceals popular nodes and links
by generating virtual topologies with equalized path
tracing flow distributions which preserve the utility of
the path tracing information (Section IV and V).

• We implement a full prototype of EqualNet using
Software-Defined Networking and carry out experi-
ments both in software and hardware to evaluate its
feasibility (Section VI). Finally, we provide a detailed
security analysis of EqualNet (Section VII).

1The protection of links between ASes is out of scope for this paper.

II. PATH TRACING TOOLS

One of the most widely used path-tracing tools today is
traceroute [12], which is used to track the route IP packets
take on their way from a source to a destination host. With
traceroute, the source sends the destination host a series of
tracing packets whose Time-To-Live (TTL) field is increased
by 1 each time, starting with TTL=1. Each router along the
path decreases the TTL by 1, checks whether TTL is equal to
zero and if so sends an ICMP time exceeded packet contain-
ing the router’s ingress IP address and Round-Trip Time (RTT)
information to the source host. This process is repeated until
the source host receives an ICMP port unreachable, caused
by the packet reaching the host or the maximum number of
hops allowed.

Path tracing tools like traceroute are still today widely
used by network operators to identify and locate failures in
their neighbor ASes. Upon detecting a failure, they typically
notify network operators of the neighbor AS and provide them
with tracing information so that they can quickly resolve the
problem [6], [41]. Unfortunately, experience has shown that
adversaries can also use path tracing tools to obtain previously
unknown network topologies, and even more, identify core
nodes and links in the network, i.e., interesting targets to
launch LFAs [31], [42], [30]

III. PROBLEM STATEMENT AND MOTIVATION

In this section, we start by introducing the three state-
of-the-art network obfuscation solutions we analyze in this
paper. Then, through a running example, we show the in-
formation adversaries can obtain from the tracing responses
when network operators deploy each of the state-of-the-art
network obfuscation solutions separately (see Figure 1). This
is followed by a rigorous analysis on the security and utility
the virtual topologies generated by existing solutions offer.

In the rest of this paper, we distinguish between two types
of network topology: (i) the physical topology and (ii) the
logical topology. The former consists of the routers and the
(physical) links between them, whose configuration is only
known to network operators. Instead, the latter comprises a
set of logical nodes (i.e., the routers’ ingress interfaces) and
the interconnections between them, i.e., the logical links. This
is the network topology view adversaries can obtain through
path tracing tools.

Existing network obfuscation solutions. The goal of
proactive network obfuscation solutions is to conceal potential
bottleneck links from adversaries by exposing secure virtual
network topologies while (in some cases also) maintaining
the utility of the path tracing information2. NetHide [37] is
a representative research work which generates secure virtual
topologies that conceal potential bottleneck links from adver-
saries while retaining most of the utility of the path tracing
information. To achieve this, NetHide first selects a (small)
set of secure3 virtual topologies and among them chooses the

2Note that NetHide is the only solution that considers utility when selecting
its virtual topologies; the other works focus solely on the security aspect.

3For the authors of NetHide, a virtual topology is secure if it guarantees that
the number of active flows that traverse potential bottleneck links are below
their capacity (so that those links are not congested).
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most useful4 one. Similarly, Trassare et al.’s [43] proposed
a topology obfuscation solution to identify and protect the
node whose failure can cause the greatest impact within the
network. To find such a node, the authors rely on the usage of
the betweenness centrality metric. In particular, their solution
generates all possible virtual topologies – each of them with
only a single virtual link between each pair of nodes – and
among the resulting virtual topologies it chooses the one
that most minimizes the betweenness centrality of the most
important node. Another prominent solution is LinkBait [46],
which protects potential bottleneck links by rerouting some
tracing flows either to nearby links (i.e., branch links) or non-
bottleneck links (i.e., bait links). The authors claim that bait
links can be branch links too. By rerouting tracing flows,
LinkBait can reduce the number of times bottleneck links
appear in tracing responses, tricking the adversary into thinking
that the bottleneck link is somewhere else in the network.

Running example. Imagine an adversary who wants to
discover interesting targets to conduct LFAs leveraging the
information obtained via path tracing tools (see Figure 1a).
The adversary controls many hosts spread across the network
and uses such hosts to send a large number of tracing packets
to the network. For the sake of simplicity, let us consider only
one of such tracing flows; e.g., one that originates from a host
connected to node A and terminates in a host connected to
node J , leading to the following tracing response: A1→D1→
E3→G1→ I1→ J1. Note that the numbers after the nodes
denote the routers’ ingress interface, e.g., A1 corresponds to
the IP address of interface 1 in node A. Now assume the
adversary finds that link E1-G1 (i.e., the logical link E3-G1) is
frequently observed in the tracing responses she obtains, and
thus decides to execute a LFA targeting this link. Next, we
detail how each of the existing topology obfuscation solutions
could conceal link E1-G1 from adversaries.

NetHide. Figure 1b shows a possible virtual topology that
NetHide could deploy to conceal link E1-G15. The core idea
behind NetHide’s strategy is to allow nodes E and G to appear
in tracing responses as long as they do not do this consecu-
tively. To avoid the latter, NetHide modifies the TTL field of
all tracing packets that traverse node E and expire at node G
(and vice versa) in order to skip one of these nodes. Hence,
the adversary would see either A1→D1→G1→ I1→ J1 or
A1→D1→E3→ I1→ J1 in her traceroute response.

Trassare et al’s solution. Unlike NetHide where all routers
(except for node E or G) reply to expired tracing packets, in
Trassare et al.’s solution, tracing packets are always answered
by the ingress router (i.e., node A). Figure 1c shows a possible
virtual topology that Trassare et al’s solution could generate to
conceal link E1-G1 containing only a single virtual link. If this
defense is deployed, the adversary would obtain the traceroute
response A1→D1→G1→ I1→ J1.

4The usefulness of a virtual topology is a measure that reflects its accuracy
and utility. The accuracy reflects how similar the network paths are in the real
and virtual topologies, respectively, while the utility is an indicator of how
physical events (e.g., link failures and congestion) are observed in the virtual
topology (and vice versa).

5Note that this virtual topology represents the best case for NetHide since
only one real node is skipped. It is worth noting that in practice NetHide may
require to skip more than one real node in order to generate a secure virtual
topology.
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Fig. 1. Comparison between virtual topology generation procedures of
previous work and EqualNet.

LinkBait. Figure 1d depicts a possible virtual topology
that LinkBait could expose to hide link E1-G1. Suppose the
bait link comprises three links: C-F, F-H and H-K which are
selected on the basis of being the closest links to link E-G
with sufficient available bandwidth. LinkBait picks the most
suitable link (based on its current latency) within the bait link
(e.g., link C-F). Eventually, if link C-F starts to receive a large
amount of traffic, LinkBait automatically selects another link
within the group (e.g., F-H). Overall, if LinkBait is used, the
adversary would obtain a traceroute response containing the
sequence A1→D1→F2→H1→ I1→ J1.

Limitations of existing solutions. After a thorough sys-
tematic analysis of the three state-of-the-art network obfusca-
tion defenses, we identified four fundamental weaknesses in
all of them. Note that fixing these weaknesses would require
major changes in existing defenses or even fully redesigning
them. Next, we describe each of these limitations in more
detail.
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1) Adversaries can infer the popularity of nodes and links.
Previous work focused solely on identifying and concealing
individual links that could become a bottleneck from adver-
saries. However, they did not look at this problem from the
perspective of an adversary who collects a large amount of
tracing responses and makes inferences about the popularity
of logical nodes (i.e., router interfaces) and links. This led to
the design of solutions that can hide certain bottleneck links
from adversaries, but are unable to conceal the number of
appearances of logical nodes in tracing responses. The latter is
problematic because, even if virtual topologies are deployed,
adversaries can still execute efficient LFAs by targeting those
nodes that appear more frequently in their tracing responses.

EqualNet. Unlike previous solutions, EqualNet tackles a
much more fundamental and challenging problem, that is,
preventing imbalanced tracing flow distributions in the adver-
sary’s view of the network topology. In particular, EqualNet
analyzes the view of the network topology from the adversary
perspective in order to determine and conceal the popularity
of logical links and nodes so that adversaries are unable to
distinguish which of them are the most popular ones.

2) Virtual topologies are too similar to real topologies.
Existing solutions aim to generate secure virtual topologies
on top of real nodes. In particular, to conceal a bottleneck
link, these solutions can either (i) create virtual links, (ii) skip
real links and nodes or (iii) use a combination of the previous
methods. However, none of them considered the addition of
virtual nodes in order to increase the complexity of the virtual
network topology observed by the adversary. Without adding
virtual nodes, regardless of the network size, the number of
potential virtual topologies that can be generated is often very
limited. This results in virtual topologies that are too similar
to the real topologies and thus easier to reverse. Because of
this, the topology leakage in the virtual topology is also likely
to be very similar to the one in the real topology.

Additionally, adversaries can leverage the fact that the
process of generating virtual topologies in existing solutions
is (to a large extent) deterministic, to infer information about
the real topology. For example, the problem of NetHide is
that it can only choose a virtual topology at random from the
(limited) set of network topologies that are both secure and
most useful. Depending on the number of virtual topologies
that fulfill both conditions, the randomness in the process of
choosing a virtual topology can be significantly reduced. This
also applies to Trassare et al’s solution which always exposes
the virtual topology (with a single virtual link) that most
minimizes the betweenness centrality of the bottleneck node.
Equally, the procedure by which LinkBait finds bait links can
be inferred by the adversary since LinkBait does not provide
many options to choose bait links. For example, in Figure 1d,
bait links can only be chosen from a disjointed path of the
original path (e.g., B1→C2→F2→H1→K1→ J3) in order
to avoid selecting the link where the bottleneck is. In all these
cases, adversaries can leverage the deterministic nature of the
virtual topology generation to make guesses about the real
topology (including where the bottleneck link can be).

EqualNet. EqualNet not only creates virtual links and skips
real ones (like previous work), but also extends the network
topology by creating virtual nodes (indistinguishable from real
nodes) that are connected to each other, forming fully disjoint

paths from those that connect real logical nodes. The addition
of virtual nodes is fundamental to increase the number of
virtual topologies that can be exposed (which increases the
difficulty of attacks). Additionally, EqualNet relies on a non-
deterministic algorithm for adding virtual nodes which selects
IP addresses at random (within the subnet of the real node’s
IP address).

3) Virtual topologies are not secure long-term. Previous
solutions focus solely on generating a single instance of a
secure virtual topology. Moreover, none of the existing solu-
tions considers the topology leakage exposed to adversaries
who can observe slightly modified virtual topologies deployed
at different times. This is important because the presence or
absence of a given node in two consecutive virtual topologies
can disclose key insights about potential bottlenecks within the
network which can ultimately facilitate LFAs.

EqualNet. EqualNet continuously monitors how much
topology information is leaked, and dynamically re-obfuscates
the network whenever the topology leakage exceeds the ob-
fuscation threshold specified by network operators. Besides
creating virtual nodes for reducing the popularity of nodes
and links, EqualNet also generates virtual nodes to prevent
adversaries from discovering the real nodes within the network.
Such virtual nodes always remain with their corresponding real
node; this way, adversaries are unable to discover which nodes
are the real ones even after observing slightly different virtual
topologies exposed at different times. This is in contrast to
virtual nodes created for reducing the popularity of nodes and
links only, which may be added to a virtual topology but do not
necessarily need to be present in subsequent virtual topologies.

4) Network operators cannot leverage path tracing infor-
mation to debug their networks. It is important for virtual
topologies not only to be secure but also to maintain the
utility of the information provided by path tracing tools. The
fundamental problem with previous works is that they all rely
on avoiding certain real nodes (i.e., the bottleneck nodes)
from answering the tracing requests that traverse them (in
order to protect them from adversaries). Existing solutions
skip real nodes and reroute tracing requests to other nodes
which handle and respond to the tracing requests intended for
bottleneck nodes. To preserve the utility of the path tracing
information, NetHide exposes secure virtual topologies while
trying to skip as few real nodes as possible (being 1 their best
case). However, in practice NetHide will often find a secure
virtual topology only if multiple real nodes are skipped (as
1-hop neighboring nodes of the bottleneck node are likely
to be as popular as the latter). In such a case, the use of
NetHide can result in a significant utility loss in the path
tracing information. Unlike NetHide, neither Trassare et al.’s
solution nor LinkBait consider utility when generating their
virtual topologies, rendering both solutions impractical. In
the former all tracing packets are handled by a single node
(the ingress router), whereas in the latter tracing packets
are rerouted to a completely different path (the branch and
bait links). Hence, these solutions not only prevent network
operators from discovering failures in the bottleneck node and
in any of its neighbor nodes and links, but also can provide
misleading information to them.
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EqualNet. Unlike previous work, EqualNet does not skip
real nodes to conceal them from adversaries. This is crucial
to be able to detect failures in any node in the network. By
creating virtual nodes such that their IP addresses are in the
same subnet as their corresponding real nodes, EqualNet en-
sures that tracing responses preserve the utility of path tracing
information (while preventing adversaries from inferring any
information that could allow them to distinguish between real
and virtual nodes). This allows EqualNet to hide the popularity
of nodes and links from adversaries, while giving enough
information to in-network operators to debug their network.

Besides the aforementioned limitations, another problem
of existing solutions is that none of them tested their obfusca-
tion algorithms using real router-level network topologies for
which the IP addresses are known. Unlike previous work, we
performed our experiments using realistic network topologies
along with their corresponding real IP addresses.

IV. THREAT MODEL AND ASSUMPTIONS

We consider a layer-3 physical network managed by a
single operator (e.g., an ISP), where all routers are SDN-
capable. (In Section VI, we relax this assumption and consider
a scenario where only some routers support SDN). Similarly
to real-world SDN networks, the network’s control plane is
logically centralized and is realized through a cluster of SDN
controllers (i.e., one main controller and several replicas of it
to avoid scalability issues).

Threat model. The goal of adversaries is to conduct effi-
cient and effective LFAs aimed to congest popular nodes and
links – whose failure can negatively affect many network users
– by injecting a large number of low-volume flows6 indistin-
guishable from normal traffic. Coremelt [42] and Crossfire [31]
are two representative research works that demonstrate the
practicality of LFAs. As shown by these attacks, adversaries
are not required to know any information about the capacity
or load of routers and links. Adversaries can control many
malicious hosts but they do not have any prior knowledge of
the network topology. However, they can employ path tracing
tools7, such as traceroute, in order to obtain insights about the
network topology as well as use state-of-the-art alias resolution
techniques to check whether various router interfaces belong
to the same router [40], [23], [33].

Assumptions. We assume adversaries do not know the
network’s subnet configuration information, such as network
prefixes in Classless Inter-Domain Routing (CIDR). Moreover,
we assume adversaries are bounded, i.e., they have limited
resources to mount their attacks. Note that otherwise it would
be impossible to defend against LFAs.

V. EQUALNET

In this section, we present EqualNet. We start by intro-
ducing the notation we use throughout this paper along with
EqualNet’s main goals and the metrics used to measure the
security and utility of its virtual topologies. Subsequently, we
describe its main components in detail.

6A flow refers to a set of packets exchanged between a pair of source-
destination IP addresses.

7If a MPLS-like protocol is used to route traffic within the network, the
MPLS traceroute command [11] can be used, which achieves the same goal
as traceroute but in a slightly different way.

TABLE I. EQUALNET NOTATIONS AND METRICS

Notation Meaning

Gp Physical topology
N p Physical node (router)
Lp Physical link
G Logical topology
N Logical node (IP address)
L Logical link
G′ Virtual (logical) topology
N ′ Virtual (logical) node
L′ Virtual (logical) link
fdN Node flow density
fdL Link flow density
Ps→d A forwarding path between s and d
P p
s→d A forwarding path between s and d for a prefix p

T p A set of all forwarding trees for a prefix p
leak(G) Topology leakage of G
sim(G′,G) Topology similarity of G′ given G
util(G′,G) Topology utility of G′ given G

Notation. Table I summarizes the notation we use through-
out this paper. We denote a physical topology by Gp =
(N p,Lp) where N p and Lp refer to its routers and links,
respectively. Note that an Autonomous System (AS) typically
determines its forwarding behavior through Interior Gateway
Protocols (IGPs) (e.g., OSPF) used to compute low-weight
routing paths. Similarly, we denote a logical topology by G =
(N ,L, fdN , fdL), where N and L refer to the logical nodes
and logical links, respectively, and fdN and fdL correspond to
the flow density of a node8 and a link (i.e., the total number of
unique flows that pass through it). Following the same method,
we denote a virtual (logical) topology by G′. A flow is denoted
by f = (s, d, a), where s ∈ S is a set of sources, d ∈ D is a
set of destinations, and a is the amount of tracing flows (e.g.,
240K) sent from s to d. Here, s and d represent nodes such as
individual hosts or IP prefix blocks that send or receive tracing
flows.

Goals and proposed metrics. Inspired by the crypto-
graphic notion of indistinguishability, EqualNet aims to expose
virtual topologies with equalized path tracing flow distribution
over all network nodes and links. This way, adversaries who
use path tracing tools (to retrieve network topology infor-
mation) are unable to distinguish between popular and non-
popular nodes by looking at the number of times each node
appears in their tracing responses. One of the main challenges
is how to achieve the latter while maintaining the utility of the
information provided by path tracing tools. Thus, the goal of
EqualNet is to generate virtual topologies that jointly maximize
security and utility. Below, we describe which metrics we
utilize to measure the level of security and utility of the virtual
topologies EqualNet generates.

Topology leakage (security). We denote as topology
leakage the difference in flow density between the node that
receives the most tracing flows (i.e., the most popular node)
and the one that receives the least tracing flows (i.e., the least
popular node).

8More precisely, the node flow density refers to the sum of flow densities
for all incoming links to the node.
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Hence, the leakage of a given logical topology G is
formally defined as:

leak(G) = |max(fdN )−min(fdN )|

Ideally, to prevent adversaries from gaining any insights about
the popularity of nodes and links, tracing flows should be
uniformly distributed over all nodes and links. This way, all
nodes would appear in tracing responses with equal probability,
and hence the topology leakage would be nonexistent. In such
a case, adversaries who use path tracing tools would not gain
any advantage over blind (inefficient) LFAs executed without
such tools.

Topology similarity (security). The topology similarity
refers to how similar a given logical topology G and its
corresponding virtual logical topology G′ are at the graph
level. The lower the topology similarity, the more random
and complex the virtual topology is, which results in greater
security. To measure the topology similarity, we compute the
graph edit distance [22] between G and G′. This metric reports
on the minimum number of operations required to transform
G′ into G. Formally, the topology similarity between G and G′

is defined by:

sim(G′,G) = 1− GED(G′,G)
|G′|+ |G|

,

where GED(G′,G) denotes the graph edit distance between
G and G′. |G| and |G′| correspond to the sum of the number
of nodes and links in the real logical topology and the virtual
logical topology, respectively.

Topology visibility (utility). This metric reflects how well
virtual topologies can assist network operators in finding
network failures. The better the subnet-level visibility, the more
chances of network operators being able to quickly fix such
failures. We denote as Ps→d a tracing path (i.e., a sequence
of IP addresses corresponding to the nodes traversed) from
source s to destination d. P p

s→d refers to the same tracing
path but this one only contains the subnet-level information,
while T p corresponds to the subnet-level network’s forwarding
tree for a given prefix p. Consider a scenario where (external)
network operators observe a failure at the i-th hop (e.g., in the
3rd node) in a tracing path Ps→d. The probability of network
operators (within the AS) being able to accurately locate the
network failure (based on the tracing information they receive
from external network operators) depends on the number of
forwarding paths numFP with length i−1 which has identical
subnet-level information as Ps→d:

numFP (T p, P p
s→d, i) = |T p[0 : i− 1] ∩ P p

s→d[0 : i− 1]|,

where [0 : i− 1] denotes the sequence of IP addresses before
the failure hop i. Therefore, the utility of a virtual topology
G′ given a logical topology G is defined as9:

util(G′,G) = avg

 ∑
(s,d)∈Tp,s ̸=d

|Pp
s→d|∑
i=2

1

numFP (T p, P p
s→d, i)


9Note that path tracing information does not help detecting failures in

the first hop (i=1) since in that case network operators do not obtain any
information when using path tracing tools.
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Fig. 2. EqualNet’s system overview. 1) Network operators provide the
physical topology with its forwarding behavior, the obfuscation threshold and
the adversary’s tracing flows. 2) The topology analyzer computes the logical
topology and the tracing flow distribution from the adversary’s perspective.
3) The topology obfuscator generates a virtual topology that equalizes the
tracing flow distribution. 4) The topology deployer continuously monitors
tracing flows and generates tracing responses with real or virtual IP addresses.

Overview. Given an unprotected (i.e., with imbalanced
tracing flow distributions) network topology, the goal of Equal-
Net is to generate a virtual topology that significantly reduces
the topology leakage in the network. As a first step, EqualNet
analyzes the view of the network topology from the adversary’s
perspective and computes the topology leakage. Subsequently,
EqualNet creates virtual nodes (i.e., instructs real nodes to
reply to tracing packets with IP addresses different to theirs)
for two different purposes: (i) to conceal real nodes from
adversaries long-term and (ii) to decrease the popularity of
the most observed nodes and links. The latter is crucial to
decrease the topology leakage; we design EqualNet such that
network operators can specify their desired level of obfuscation
depending on the level of security they need and the overhead
they are willing to tolerate. Meanwhile, EqualNet assigns
virtual nodes IP addresses within the same subnet as the one
from the real node from which they originate, maintaining the
utility of path tracing information. Whenever a node appears
too frequently in the adversary’s tracing responses compared
to the other nodes, EqualNet automatically adjusts the exposed
virtual topology to decrease the topology leakage based on the
level of security network operators wish to have.

Example. Consider again the running example described in
the previous section. Figure 1e illustrates the way EqualNet
could conceal the bottleneck link E1-G1 from adversaries.
Note that this is just a simple example where EqualNet
creates an additional virtual node in nodes A, D, E, G, I
and J. (However, in practice EqualNet can create more virtual
nodes in each physical node to reduce the topology leakage).
EqualNet exposes a virtual topology containing several virtual
nodes (denoted as V 1-V 6), whose network IP prefixes are the
same as those in the physical nodes where they are created
(to preserve subnet information), and their host IP addresses
are selected at random (to provide security). Hence, when
EqualNet is used, the adversary would obtain a traceroute
response containing either A1→D1→E3→G1→ I1→ J1 or
V1→V2→V3→V4→V5→V6, where both responses are
equally likely (and fully disjoint). The latter is crucial because
in such a case adversaries can neither learn which nodes and
links are popular nor infer real topologies among different
topology instances.
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We propose two variants of EqualNet. The first one esti-
mates the adversary’s view of the network topology offline
based on information provided by the network operators.
Then, it uses this information along with the obfuscation
threshold (also specified by the network operators) to compute
(offline) the number of virtual nodes required to guarantee
that the topology leakage is below the obfuscation threshold.
Afterwards, EqualNet exposes a virtual topology that attempts
to reduce the topology leakage in a best-effort manner using
solely the number of nodes created offline. This variant of
EqualNet is suitable for network operators who do not want
to create too many virtual nodes. Yet, it requires network
operators to possess information about the adversary’s behavior
(which may be unavailable or inaccurate). In contrast, the
second variant operates fully online and performs the obfus-
cation tasks on-the-fly (i.e., as tracing packets arrive to the
network) without requiring the definition of the adversary’s
behavior. Following the procedure previously described, the
second variant of EqualNet first computes the topology leakage
and then attempts to decrease it. Here, rather than providing
the desired topology leakage reduction, network operators are
required to provide the maximum difference in number of
tracing flows they can tolerate between any pair of nodes. In
this case, the goal of EqualNet is to guarantee that the topology
leakage does not exceed the tolerated number.

As shown in Figure 2, EqualNet comprises three main
components: (i) the topology analyzer (Section V-A), (ii) the
topology obfuscator (Section V-B) and (iii) the topology de-
ployer (Section V-C). In the next subsections, we will introduce
the main components of EqualNet focusing on how these work
when applied to the first variant of EqualNet. At the end of
this section, we will present the second variant of EqualNet.

A. Topology Analyzer

The topology analyzer starts by inspecting a given (unpro-
tected) network topology in order to infer the network topology
view observed by an adversary who uses path tracing tools.
Then it analyzes the distribution of path tracing flows to find
the most popular nodes and links.

Building the adversary’s logical topology. Initially, the
topology analyzer conducts a series of simulations offline to
find the network topology the adversary would observe from
the tracing responses it obtains. To that end, the topology
analyzer requires network operators to provide the network
topology, its forwarding behavior and the adversary’s tracing
flows. For the latter, one option is to let network operators
specify the adversary’s behavior themselves (e.g., based on
traces from past attacks). Alternatively, the topology analyzer
can use some default configuration, e.g., assume a worst case
scenario where adversary’s flows are sent from all ingress
routers. (In Section V-D, we introduce the second variant
of EqualNet, which does not require network operators to
provide the adversary’s tracing behavior as input). In the rest of
this section, we assume that network operators have valuable
information about past attacks which they can use to model
the adversary’s tracing behavior.

The topology analyzer proceeds with its (offline) simula-
tions as follows: it takes the adversary’s tracing flows, sends
them to the corresponding destination nodes and collects the
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Fig. 4. Measured tracing flow distribution in our running example. The red
arrow refers to the current topology leakage in the network.

produced tracing responses. The adversary’s tracing flows are
given as a triplet containing the source and destination IP
prefix blocks (or wildcard rules) along with their corresponding
flow amounts. For example, a triplet (10.1.0.0/16, 10.2.0.0/16,
240K) mimics the behavior of an adversary who uses source
nodes in 10.1.0.0/16 to send 240K different tracing flows to
destination nodes in 10.2.0.0/16. Figure 3 shows the view of
the network topology obtained by an adversary who sends
240K tracing flows between all source-destination pairs in the
network.

Algorithm 1. Next, we introduce the graph-based algorithm
used to construct the network’s logical topology from a given
physical topology and adversary’s tracing behavior. Given a
physical topology, its forwarding behavior and the adversary’s
tracing flows, Algorithm 1 picks the first adversary’s tracing
flow, which specifies how many tracing flows a are sent from
the source host s to the destination host d (line 2). Then
it computes the physical path paths→d, which contains all
physical nodes along the shortest path from the source s to
destination d (line 3). Starting from the source, a tracing
flow visits each i-th physical node np

i along the physical path
paths→d (lines 4 to 5). For each visited physical node, the
algorithm obtains a tracing response with the IP address of
the router’s ingress interface (lines 6 to 7). Then, it creates a
logical link li from the previous node (the last visited one)
ni−1 to the current node ni (line 8). If the logical node and
link do not (yet) exist in the logical topology, they are added
to it (lines 9 to 12). The algorithm also adds the number
of tracing flows a to the flow density of the corresponding
link and node, respectively (denoted as fdL(li) and fdN (ni))
(lines 13 to 14). This process is repeated for all physical nodes
along this specific path then for all other adversary’s tracing
flows. Finally, the algorithm returns the logical topology G
which reflects the adversary’s view of the network (line 15).
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Algorithm 1 Logical topology generation
Require:

Physical topology Gp = (N p,Lp)
Adversary’s tracing flow set F = {f1, f2, ..., fx}
f = (s, d, a), s ∈ S, d ∈ D, a ∈ N

Ensure:
Logical topology G = (N ,L, fdN , fdL)

1: N ← ∅,L ← ∅ ▷ Initialization
2: for f ∈ F , where f = (s, d, a) do
3: paths→d ← GETFORWARDINGPATH(Gp, s, d)
4: n0 ← s ▷ Initialize the current logical node
5: for i← 1 to paths→d.length do
6: np

i ← paths→d[i]
7: ni ← GETINTFIPADDR(Gp, np

i−1, n
p
i )

8: li ← (ni−1, ni) ▷ Make a logical node and link
9: if ni /∈ N then ▷ If ni does not exist, add it

10: N ← N ∪ {ni}
11: if li /∈ L then ▷ If li does not exist, add it
12: L ← L ∪ {li}
13: fdN (ni)← fdN (ni) + a ▷ Update node flow density
14: fdL(li)← fdL(li) + a ▷ Update link flow density
15: G ← (N ,L, fdN , fdL)

Identifying popular nodes and links. Besides revealing
the logical topology, tracing responses can provide the ad-
versary with insights about the tracing flow distribution in
the network. Unfortunately, regardless of their size, networks
typically contain a few nodes that handle most of the traffic,
provoking an imbalanced path tracing distribution over nodes
and links [30]. Consider the network topology shown in
Figure 3 and its corresponding tracing flow distribution (see
Figure 4). Due to the imbalanced tracing flow distribution,
there exists a significant difference in flow density between the
most popular logical node (i.e., G1) and the least popular ones
(i.e., F1 and J3). As a result, the current network topology
has a high topology leakage, meaning that valuable information
about the network characteristics is disclosed to adversaries.

EqualNet allows network operators to define an obfuscation
threshold to limit the maximum topology leakage permitted in
the network. This provides greater flexibility since it allows
adjusting EqualNet according to the needs of network oper-
ators. Here, the obfuscation threshold refers to the topology
leakage reduction (measured in %) network operators wish to
achieve with respect to the topology leakage in the original
network topology. The higher the topology leakage reduction
is, the more equalized the tracing flow distribution will be,
and thus the more difficult will be for adversaries to gain
insights about the popularity of nodes and links. However,
as shown in Section VI, this typically also comes at the
cost of generating more virtual nodes, which is undesirable.
Therefore, there is the need to find a suitable balance between
the chosen obfuscation threshold and the number of virtual
nodes generated (see Section V-B for more details).

B. Topology Obfuscator

Estimating the number of virtual nodes to obfuscate
the network topology. The topology obfuscator equalizes the
path tracing distributions over nodes and links in a best-effort
manner while keeping the number of created virtual nodes
relatively small. Suppose the topology leakage in the original
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160Κ→80K

II1

Neighbor virtual nodes

V5 V6160K 160K
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Fig. 5. Procedure through which the obfuscation algorithm equalizes the
tracing flow density of a popular node (G1) by adding virtual nodes (V1, V2,
and V3) and a fixed set of virtual nodes (which always appear in the exposed
virtual topologies) to hide real nodes from adversaries (V4-V9).

network topology is 600 flows (as in Figure 4), and that
network operators wish a 80% topology leakage reduction. In
such a case, the goal of EqualNet is to lower the topology
leakage from 600 to (at most) 120 flows.

Independently of the topology leakage in the original logi-
cal topology, the first step for the topology obfuscator is always
to generate a small, fixed number of (guard) virtual nodes in all
real nodes in order to protect them from adversaries who can
observe multiple, slightly different virtual topologies exposed
over time. For example, all real nodes in Figure 5 contain two
virtual nodes each for this purpose (V4 and V7 in node E, V5
and V8 in node G, and V6 and V9 in node I). Essentially, the
intuition behind this method is to use those virtual nodes to
produce a sort of anonymity set – whose size does not need
to be large – to avoid adversaries from inferring which nodes
are real long-term. Therefore, those virtual nodes must always
be present in any virtual topology exposed by EqualNet.

Afterwards, for each real node, EqualNet equalizes the
tracing flow distribution among the real nodes and the existing
(guard) virtual nodes, and computes the new topology leakage.
If the topology leakage is still higher than the target (i.e.,
120 flows), EqualNet creates additional virtual nodes (in
Figure 5 the topology obfuscator creates V2) to further split
tracing flows among virtual nodes, causing the popularity of
certain nodes and links to decrease even further. To maintain
consistent logical paths, all subsequent tracing packets within
the same flow get the same set of logical and virtual nodes as
the first tracing packet.

There exists an important aspect to be considered when
adding virtual nodes to the virtual topology. From a security
point of view, it is important for virtual logical nodes not to
be connected to real logical nodes, since there can only be one
node connected to a router’s interface at a time and the latter
are already connected to other (real) logical nodes. Otherwise,
this could disclose to adversaries that two IP addresses belong
to the same node (see the discussion on alias resolution in
Section VII for more details). To satisfy this requirement,
whenever the topology obfuscator creates a virtual node in
a real node (e.g., V2 in real node G), it also creates a virtual
node in each of its neighbor nodes (e.g., V1 in node E and
V3 in node I) and then connects them so that they form fully
disjoint paths from those containing all real logical nodes (see
Figure 5). As a result, adversaries who use path tracing tools
can either obtain (i) E3→ G1 → I1, (ii) V4→ V 5 →V6,
(iii) V7→ V 8 →V9 or (iv) V1→ V 2 →V3.
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The procedure is then repeated until the topology obfus-
cator generates a virtual topology whose topology leakage is
equal or below the target previously defined (e.g., 120 flows
in the previous example) or until there are no IP addresses
available in (at least) one of the subnets. Once this is finished,
the topology obfuscator outputs the number of virtual nodes
that need to be created considering the previously defined
obfuscation threshold. These are the virtual nodes available
to the topology deployer to obfuscate the network topology
online (see next subsection). For more details on how the
offline obfuscation works, we refer the reader to Appendix A.

C. Topology Deployer

The last step for EqualNet is to deploy the previously
generated virtual topology in the network leveraging SDN. The
topology deployer generates flow-rules and instructs routers to
reply to tracing packets either with any of their real IP address
or with a fake one. The deployment of the virtual topology can
be divided into two steps: (i) the realization of virtual nodes
using SDN and (ii) the assignation of IP addresses to virtual
nodes. Next, we describe both steps in detail.

Realizing virtual nodes. Leveraging the lack of security
mechanisms to preserve the integrity and authenticity of trac-
ing packets, the topology deployer modifies the source IP
address field in tracing responses in order to create virtual
nodes and links in the logical topology. This requires some
(minor) configuration changes in the network that only needs
to be done once. As SDN-enabled routers do not decrease
the TTL value by default [18], the topology deployer installs
a permanent flow-rule in all routers with the action Decre-
ment IP TTL so that they decrement the TTL field by 1 in the
tracing packets they receive. It is important to note that only 1
flow rule is required for this in each router and that EqualNet
does not require routers to keep any other state. In addition, the
SDN controller sends a Set Async Config OpenFlow packet
to each router to enable the Invalid TTL flag. By doing so,
every time a router receives a tracing packet for which the
TTL is invalid, the router automatically encapsulates it within
a Packet In OpenFlow packet and forwards it to the SDN
controller.

The controller keeps an obfuscation map that is constantly
being updated. It comprises a 3-tuple: {flow ID, router in-
terface and response IP address}. The flow ID refers to the
source and destination IP address prefix, the interface denotes
the router interface where the tracing packet is received and the
response IP address corresponds to the IP address EqualNet
assigns to the tracing response. Figure 6 shows an example of
tracing response generation. Suppose the interface G1 receives
a tracing packet (belonging to a new tracing flow). The first
step is for router G to send it to the controller10 via an
OpenFlow Packet In packet. Then, the controller chooses a
valid response IP from the obfuscation map and sends an
OpenFlow Packet Out packet to router G containing a crafted
tracing response with the virtual IP address V 2 (see Figure 6).

Assigning IP addresses to virtual nodes. To assign
IP addresses to newly-generated virtual nodes, the topology
deployer could follow various strategies. One possibility would

10In any SDN network, tracing packets are processed by the control plane
and hence always need to be forwarded to the SDN controller.

SDN Controller 

E DestinationG
TTL=2 TTL=1

V2

<Obfuscation Map>
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Response IP: V2

OF Packet_In
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I

Flow ID Interface Response IP address
10.0.1/24 → 10.0.0/24 G1 (10.0.2.1) V1: 10.0.2.101
10.0.4/24 → 10.0.0/24 G1 (10.0.2.1) V2: 10.0.2.102

Source

G2 I1G1E3 E1

Virtual IP address (V1)

Virtual IP addres (V2)

Fig. 6. The example scenario (top) and the result (bottom) of response
generation to realize virtual nodes V1 and V2 in the path tracing tool when
detecting a tracing packet whose TTL is 1 at interface G1.

be to allocate random IP addresses to virtual nodes. However,
the use of random IP addresses in tracing responses would
be noticeable to adversaries, which could then leverage this
information to distinguish between real and virtual nodes.
Moreover, this approach would not maintain the utility of
the path tracing information. Instead, the topology deployer
opts for assigning virtual nodes randomly-chosen IP addresses
within the same subnet as their real logical nodes. To avoid
using already assigned IP addresses, the topology deployer
periodically interacts with the SDN controller and retrieves
the list of assigned IP addresses from its topology discovery
services.

Obfuscating the network topology long term. Once
the virtual topology is exposed, the topology deployer con-
tinuously monitors all incoming tracing flows. Every time a
node receives an expired tracing packet (with TTL=0) in one
of its interfaces, it notifies the topology deployer and the
topology leakage is re-computed. If the topology obfuscator
detects that the topology leakage is above the tolerated value
(based on the defined obfuscation threshold), it makes the
necessary changes to the exposed virtual topology to decrease
the topology leakage while creating as few virtual nodes
as possible. (Recall that the maximum number of virtual
nodes that can be produced is determined by the output of
the topology obfuscator). Otherwise, the topology deployer
balances the incoming tracing packets among existing real and
virtual nodes.

The addition or removal of virtual nodes to/from the virtual
topology (to decrease its topology leakage) does not leak any
useful information to adversaries. This is because EqualNet
adds a fixed number of virtual nodes – which are always
present in all virtual topologies exposed – to permanently
protect all real nodes in the network. We also argue that it
is not a problem if a few real nodes are added or removed
since adversaries are unable to know how many of such
nodes are real nodes and how many of them are virtual ones.
While in our experiments we created the same number of
virtual (guard) nodes for each of the real nodes, in practice
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network operators could decide to generate a different number
of permanent virtual nodes per node. This approach would
make it even harder for adversaries to learn any information
about the number of real and virtual nodes being added or
removed.

D. Second variant of EqualNet

In the previous subsections, we presented the main com-
ponents of EqualNet and showed how they are used by the
first variant of EqualNet to hinder adversaries from knowing
which are the most popular nodes and links. Next, we introduce
EqualNet second variant.

Unlike the first variant, the second variant of EqualNet
equalizes the tracing flow distributions on-the-fly (i.e., as
tracing packets are sent to the network) and hence is fully
online. This means that network operators who do not have
(or do not want to use) past attack data can also use EqualNet.
Network operators only need to provide the network topology
as well as the desired obfuscation threshold to EqualNet, which
then uses this information along with the received tracing
packets to compute the current topology leakage and reduce it
to a large extent. In this case, the obfuscation threshold refers
to the maximum difference in number of tracing flows between
any pair of nodes allowed in the network. From this point
onward, EqualNet follows a similar obfuscation procedure
as the one shown in the first variant. The only difference
compared to the first variant is that now EqualNet is not
limited to using solely the number of virtual nodes generated
offline. As a result, EqualNet can create as many virtual nodes
as needed to keep the topology leakage under the maximum
tolerated value for as long as there are available IP addresses
in the subnets of the real nodes.

VI. IMPLEMENTATION AND EVALUATION

Implementation. To evaluate the feasibility of our solu-
tion, we developed a full prototype of EqualNet using various
SDN applications (2K+ lines of code) running atop Ryu
v4.29 [8], a widely known open-source SDN controller. We
implemented a separate SDN application for each of the three
modules comprising EqualNet, namely (i) topology analyzer,
(ii) topology obfuscator and (iii) topology deployer. In ad-
dition, EqualNet includes two additional SDN applications –
which we name tracing flow forwarding manager and alias
resolution handler. The former is used to maintain information
about the tracing flows sent to routers and to install rules for
forwarding unexpired tracing packets to a destination, whereas
the latter intercepts tracing packets that target virtual nodes
and generates valid responses to those packets in order to
prevent adversaries from fingerprinting routers. To evaluate
our obfuscation algorithms, we leverage the Mininet [35]
network simulator, which runs Open vSwitch v2.5.5 [7] and
supports the OpenFlow v1.3 specification. We conducted our
experiments in an Intel Xeon Silver 4210 CPU 2.20Ghz with
64GB RAM.

Topology dataset. To assess the effectiveness of our al-
gorithms, we used the CAIDA Internet Topology Data Kit
(ITDK) dataset [10], which comprises a set of router-level
network topologies. As those datasets incorporate real IP
addresses observed in the wild, they can be used for simulating

(a) AS 13576 (small) (b) AS 35132 (medium) (c) AS 35575 (large)

Fig. 7. Router-level topology data from CAIDA ITDK [10].

adversaries who use path tracing tools to discover popular
nodes within an AS. Given that this dataset contains infor-
mation about millions of routers without distinguishing inter-
and intra-AS connections, we adjusted it to be tailored for
our purpose (intra-AS links). Then, we selected the following
three networks: (i) AS 13576 (15 physical nodes and 30 links),
(ii) AS 35132 (30 physical nodes and 60 links), and (iii) AS
35575 (71 physical nodes and 140 links) in order to evaluate
the suitability of EqualNet when applied to small, medium, and
large-sized networks (see Figure 7). In the rest of this section,
we consider that each node sends 1K tracing flows to each
of the remaining nodes in the network to construct the initial
logical topology. Similarly, for evaluations 1-5, each host sends
1K tracing flows to each of the remaining hosts [12].

1) Effectiveness of tracing flow equalization. We tested
the obfuscation algorithms of both variants of EqualNet with
several obfuscation thresholds11. Figure 8 shows the inverse
complementary cumulative distribution functions (CCDF) of
flow densities measured in the three network topologies. An
ideal result would be that tracing flow distributions in nodes
and links exhibit close to horizontally flattened patterns (i.e.,
the τI=80% case is the best one). As expected, the selection
of strict obfuscation thresholds leads to very equalized path
tracing flow distributions. However, we also observe that in
both variants, the tracing flow distributions in the three network
topologies are largely equalized even when the least strict
obfuscation thresholds are used (i.e., τI=20% and τII=0.5K).
For example, about top 60% nodes in small and medium
ASes and top 90% of nodes in the large AS exhibit similar
flow density values with the least strict obfuscation threshold
τII=5K (see dashed green lines). Overall, this experiment
shows that the obfuscation algorithms used by EqualNet to
equalize the tracing flow distributions are very effective at
hiding the popularity of nodes and links in the network.

2) Topology leakage reduction vs. required virtual
nodes. We analyzed the number of virtual nodes that need
to be created for achieving different levels of obfuscation. As
shown by Figure 9, the stricter the obfuscation threshold is,
the more virtual nodes are needed. For example, in EqualNet
variant I, using the strictest obfuscation threshold (τI=80%)
in the large AS requires around 75 virtual nodes in each
router, which is 9x larger than when the loosest threshold
(τI=20%) is applied. However, it is interesting to see that only
with the loosest threshold EqualNet can equalize the tracing
flow distribution of the large AS considerably while creating
a reasonably small number of virtual nodes (around 9 virtual

11In the first variant, the obfuscation threshold denoted by τI , refers to
the desired topology leakage reduction. In contrast, in the second variant, the
obfuscation threshold denoted by τII , refers to the maximum difference in
number of tracing flows between any pair of nodes allowed in the network.
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τII = 5K τII  = 3K τII  = 1K τII  = 0.5K

Fig. 8. Equalized flow density distributions for each of the topologies for the variant I and II using diverse thresholds τI and τII , respectively. Note that the
more horizontally flattened, it implies that the more flow density distributions are equalized.
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Fig. 9. Average number of virtual nodes that need to be created in each real
node for different obfuscation thresholds.
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Fig. 10. Trade-off between topology
leakage reduction and the number of
average virtual nodes required for a
single router.
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Fig. 11. Effectiveness of obfuscation
under the partial SDN deployment at
important network locations.

nodes in each real node which results in a total number of
virtual nodes of around 600). Moreover, we performed some
experiments to investigate the relationship between the number
of virtual nodes generated and the achieved topology leakage
reduction for the three network topologies. Figure 10 shows
that for the large AS the number of virtual nodes required
grows linearly as the topology leakage reduction increases.
However, we observed that this does not always hold in all
network topologies. For example, using 14 virtual nodes in
each router in the small AS achieves a 76% topology leakage
reduction; note that this only improves the topology leakage

reduction by just 5% compared to the case when 9 virtual
nodes are used in each router. This experiment shows that
there is a need to find an optimal balance between the topology
leakage reduction and the number of virtual nodes such that
the topology leakage is reduced significantly while keeping the
number of created virtual nodes as small as possible. As our
results reveal, there might be a point where EqualNet requires
to add a large number of virtual nodes to lower the topology
leakage only very slightly. We argue that network operators
can use this to determine the optimal number of virtual nodes
that need to be created.

3) Partial SDN deployment. We analyzed the feasibility of
deploying EqualNet in networks where only a subset of routers
support SDN. In such a case, only SDN-enabled routers can
obfuscate their interfaces; other routers are forced to expose
their real interfaces to tracing flows. We considered the case
in which network operators decide to use SDN in centralized
core routers. To that end, we first computed the betweenness
centrality [21] for all physical nodes and incrementally selected
the nodes with the highest centrality as SDN routers. Then we
measured the topology leakage reduction EqualNet can achieve
when varying the percentage of SDN-capable devices in the
network. As we expect that such central routers will receive
many more tracing flows than others, we used the strictest
obfuscation threshold τII=0.5K. Figure 11 shows that by just
having 20% of SDN-capable routers, EqualNet was able to
reduce the topology leakage by 40% in the small and medium
ASes. In contrast, in the case of the large AS, the results
indicate that there exists a linear relation between the topology
leakage reduction and the number of SDN-capable routers in
the network. Interestingly, these results also show that having
SDN in more than 80% and 50% of their routers for the small
and medium ASes does not lead to significant improvements
in terms of leakage reduction, making this deployment strategy
(80% and 50%, respectively) the most optimal. As these high-
centrality nodes received many tracing flows, EqualNet was
able to efficiently apply its obfuscation algorithms in order to
lower the topology leakage.
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Fig. 13. Measured utility of Equal-
Net for different subnet sizes.

Overall, our experiments showed that EqualNet can also
significantly reduce the topology leakage in networks where
only some of its routers support SDN.

4) Topology similarity. To assess the security of EqualNet,
we measured the topology similarity of virtual topologies
generated by EqualNet, and compared them with those pro-
duced by existing network obfuscation solutions. As none of
the state-of-the-art topology obfuscation defenses made their
obfuscation algorithms publicly available, we implemented
them ourselves. We used moderate obfuscation thresholds
(τI=40% and τII=3K) in both variants. Figure 12 shows a
comparison between existing solutions and EqualNet’s variants
in terms of the topology similarity they offer. Our results show
that EqualNet is able to produce the most dissimilar virtual
topologies (in the best case EqualNet achieved a 76% similarity
reduction). This stems from the fact that EqualNet expands the
topology space by adding virtual nodes and links. This is in
contrast to previous solutions, whose virtual topologies did not
experience a significant similarity reduction. To illustrate this,
consider the 2-hop obfuscation strategy followed by LinkBait,
which exhibited (at best) 58% similarity reduction. For a fair
comparison with EqualNet and Nethide, recall that, unlike the
previous, LinkBait does not intend to provide utility in the
virtual topologies it generates; without this requirement we
note that it is easier to expose dissimilar virtual topologies.

5) Topology utility. We analyzed the topology utility of
the virtual topologies created by EqualNet using the utility
metric we introduced in Section V. As there is no available
dataset for which the IP prefixes are known (this information
is kept confidential), we simulated subnet-level traces (e.g.,
10.0.2/24 → 10.0.3/24) from the CAIDA dataset. To that
end, we considered a realistic range of prefixes that can be
employed for a single node or link (e.g., from /24 to /29).
Figure 13 shows that EqualNet could provide 60% utility in
average for all network prefixes. The case when EqualNet did
not achieve high utility (48% in AS 35132 for /24 prefix) is
because of the way the IP assignment is done. In that AS,
there are several physical nodes with IP addresses which, under
various possible prefixes, would belong to the same subnet.

6) Scalability verification. We also evaluated the scalabil-
ity of Algorithms 1 and 2. For this, we randomly selected 200
ASes from the CAIDA dataset whose size spans over small
(61 nodes) to large networks (206 nodes). For each of the 200
ASes, we measured the (i) time it takes to generate logical
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Fig. 14. The scalability of EqualNet’s algorithms.

topologies (Algorithm 1) and (ii) the time it takes to estimate
virtual nodes needed offline (Algorithm 2). Figure 14 shows
the distributions of measured execution time for Algorithm 1
and 2. Our results indicate that logical topology generation
(Algorithm 1) takes less than 100 milliseconds in most ASes
(around 80%) whose size is less than 150 nodes. For large-
sized networks (206 nodes), we observe that this can take
up to 356 milliseconds. Similarly, estimating the number of
virtual nodes needed (Algorithm 2) takes less than 2 seconds
in most cases (around 95%) regardless of the chosen value for
topology leakage reduction. If a stricter obfuscation threshold
is chosen, the time it takes for the algorithm to be completed
will increase (e.g., 30 seconds in τI=80%). Given these results,
re-running the algorithms (e.g., when the physical topology
changes significantly) will not impose a significant overhead.

7) Latency. We examined the RTT distributions of various
routers after sending them many tracing packets with and
without EqualNet (see Figure 16). By comparing the RTT
distributions with and without EqualNet, we observed that
EqualNet does not introduce a noticeable delay (maintaining
the utility of the RTT values included in tracing responses).

VII. SECURITY ANALYSIS

In a nutshell, the security of EqualNet is strongly related to
three fundamental questions: Q1) Can adversaries distinguish
between real nodes? Q2) Can adversaries distinguish between
real and virtual nodes? Q3) Can adversaries infer whether
two IP addresses belong to the same subnet?

Next, we analyze the security properties offered by Equal-
Net, highlighting the mechanisms it has to defend against
a broad range of security attacks. Due to lack of space in
this paper, we discuss how EqualNet defends against subnet
inference attacks in Appendix B and elaborate on possible lines
of work to further improve EqualNet in Appendix C.

Resistance to RTT-based fingerprinting attacks. Ad-
versaries could attempt to distinguish the real nodes in the
network from the RTT information in the tracing responses.
This could allow them to know which virtual IP addresses
belong to each real node, and ultimately retrieve the popularity
of all real nodes and links in the network. To evaluate the
resistance of EqualNet to such attacks, we conducted several
experiments using a hardware testbed with the purpose of
analyzing whether RTTs inside tracing responses can (i) act
as a router’s fingerprint (ii) reveal that EqualNet is being used
and (iii) be used to distinguish between real and virtual nodes.
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Figure 15 shows the network setup we used. Our hardware
testbed comprises 6 SDN routers from 3 different vendors: 2
EdgeCore AS4610-54T, 2 Pica P-3297 and 2 P-3290 devices.
To prove the security of EqualNet, we considered a worst-case
scenario where the adversary (i.e., Host A) is able to obtain
tracing packets with noise-free RTT measurements. (Note that
in practice these measurements will be heavily affected by
noise and thus it will be even harder for adversaries to
distinguish nodes based on RTT measurements). In particular,
we selected 1 hardware router each time and placed it between
Host A and Host B. For each of the 6 hardware routers, we
then sent 1000 traceroute packets from Host A to Host B,
and computed the average of the RTTs values obtained in the
traceroute responses (see Figure 16).

Can RTTs act as a router’s fingerprint? The dashed lines
in Figure 16 denote the obtained RTT distributions for each of
these devices when EqualNet is not used. While routers from
the same vendor tend to exhibit a similar RTT distribution, no
single router has a sufficiently different RTT distribution to be
uniquely and precisely identified. We would like to stress that
in any real-world network, the task of identifying routers from
their RTTs will be even more difficult for various reasons.
First, the propagation time in the channel is likely to be the
dominant factor in the RTTs (instead of the processing time)
as tracing packets have to traverse multiple nodes back and
forth. As a result, the propagation delay of tracing packets is
typically in the order of several milliseconds and can have a
significant variance. Second, it is important to note that ASes
typically contain a large number of routers, making it very
difficult for adversaries to distinguish each of them. Because
of this, we argue that it is hard for adversaries to distinguish
the real nodes in realistic environments by looking at the RTT
values within tracing responses.

Can RTTs reveal that EqualNet is being used? The straight
lines in Figure 16 denote the obtained RTT distribution for

each of these devices when EqualNet is used12. By comparing
the RTT obtained with and without EqualNet, we can observe
that EqualNet comes with a small and stable (compared to the
RTTs obtained when EqualNet is not used) latency increase
of less than 1 millisecond. While it is not our goal to hide the
fact that EqualNet is being used in the network, due to the
reasons previously explained it will be difficult for adversaries
to learn such information from the RTTs they obtain.

Can RTTs be used to distinguish between real and virtual
nodes? For every tracing packet sent to the network, EqualNet
re-computes the topology leakage, selects a suitable node (i.e.,
the IP address) to respond and, in case no suitable node exists,
generates a new virtual node. Among them, the most computa-
tionally intensive operation (and hence the one that influences
latency the most) is the topology leakage computation, which
is applied equally to all nodes regardless of whether they are
virtual or real. Due to this, we did not observe any significant
difference in the RTT distributions obtained when virtual and
physical nodes are used.

Protection against alias resolution. Several alias reso-
lution techniques have been proposed to discover whether
multiple IP addresses belong to the same router, i.e., if such
IP addresses are used in the various router’s interfaces. Such
techniques could allow adversaries to associate a set of virtual
IP addresses to their real node, thus breaking the obfuscation
logic behind EqualNet. To avoid such attacks, EqualNet offers
strong protection against three widely used alias resolution
methods [32] known as (i) common source analysis, (ii)
common ID analysis, and (iii) common neighbor analysis.

The first method requires to send TCP/UDP probes to
routers’ interfaces with unused ports which trigger routers to
send ICMP Port Unreachable responses (e.g., mercator [23],
iffinder [4]). With this method, one can conclude that any set
of tracing responses containing a common source address orig-
inate from the same router. To defend against adversaries who
employ this method, EqualNet modifies the tracing response
source IP address so that it is the same as the tracing request
destination IP address. The second method leverages the way
IP IDs are generated in the tracing responses to discover if two
tracing responses come from the same router (e.g., ally [40],
MIDAR [33], radargun [16]). To defend against this method,
EqualNet randomizes the IP ID field within tracing responses.
The third method finds the common neighbor by inspecting the
IP addresses within the obtained tracing responses. Essentially,
if two different IP addresses observed at the same level of
TTL hops are adjacent with the common IP address reported
in the next hop, those two addresses are likely to be from the
same router (e.g., APAR [24], Kapar [32]). To defend against
this, EqualNet ensures that no two real or virtual nodes are
connected to the same logical node.

To verify that EqualNet can effectively prevent adversaries
from using any of these aliasing methods, we conducted a
series of experiments with Scamper [9], Iffinder [4], kapar [5],
three open-source and widely-used alias resolution tools that
support the aforementioned techniques. We generated 1000
tracing-type packets in AS 35132 with the obfuscation thresh-
old τI=60% and obtained 449 IP addresses as the result of

12This includes the case where EqualNet replies with a real IP address and
the one where EqualNet replies with a fake IP address.
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Fig. 17. The results of alias resolution tested with Scamper (top), Iffinder
(middle), and Kapar (bottom).

obfuscation. Then we used the tools to check whether they can
identify any real router from the real and virtual IP addresses
the adversary would get. Based on the obtained results, we can
conclude that adversaries who use such tools would be unable
to detect aliases among them due the security mechanisms we
developed within EqualNet, as shown in Figure 17.

Resistance to topology inference attacks. We also analyze
the scenario where adversaries attempt to discover information
about the real network topology by trying all possible masks
(e.g., from /24 to /29) and aggregating all IP addresses whose
mask is identical into a single node (as it is impossible for
adversaries to know the number of real nodes within a given
subnet)13. This process leads the adversary to infer a set of
subnet-level topologies (one for each mask). We measured
the leakage and the topology similarity between each of the
subnet-level topologies inferred by the adversary and the real
network topology. As shown in Figure 18a, the adversary can
in some cases (e.g., with the /29 prefix) infer the leakage at the
subnet-level quite accurately. However, this is not problematic
because they cannot know how many nodes are in each subnet,
and hence cannot infer the popularity of nodes or links in the
network. This is confirmed by the results shown in Figure 18a,
which shows that in the worst case the topology produced by
the adversary and the real one are similar only by 60%.

Resistance to cross virtual topology attacks. To generate
virtual topologies that remain secure long-term, EqualNet not
only analyzes and protects a given instance of virtual topology,
but also monitors and prevents topology leakage arising from
exposing multiple virtual topologies at different times. For the
latter, EqualNet employs a set of techniques which guarantee
that adversaries who can observe multiple, slightly different
virtual topologies gain no knowledge about the network topol-
ogy and its most popular nodes and links. First, EqualNet adds
a fixed number of virtual nodes to each real node which always
appear in the virtual topologies generated by EqualNet and
hence prevents adversaries from discovering which nodes are
the real ones. Second, EqualNet keeps the same network path
for a given tracing flow. Thus, an adversary always gets the

13Note that here we assume that all nodes have a mask of the same size
since this is a best case for adversaries (in that case the number of masks
to try is relatively small). However, in practice, with the emergence of CIDR
routers are likely to use prefixes of many different sizes.
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(a) Leakage similarity for various prefixes (the lower the leakage
similarity, the more secure the virtual topology is).
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(b) Topology similarity for various prefixes (the lower the topology
similarity, the more secure the virtual topology is).

Fig. 18. Leakage and topology similarity between real network topologies
and the subnet-level topologies inferred by the adversary.

same information from sending tracing requests through the
network path belonging to a specific flow. Finally, whenever a
node is starting to look popular, EqualNet creates a new virtual
node not only in the node itself but also in all its neighbor
nodes. This is important because without adding such neighbor
virtual nodes, adversaries could use alias resolution techniques
to decrease the security of EqualNet.

Resistance against Denial-of-Service attacks. Over the
last decade, several Denial-of-Service (DoS) attacks have been
proposed whose goal is to crash or waste the resources of the
SDN controller [44], [39]. In this setting, adversaries could
attempt to execute such attacks by injecting large amounts of
tracing packets to the network. One possible way to mitigate
these attacks would be to use a distributed SDN controller [17],
[34]. Note that network operators typically rely on a cluster of
SDN controllers (i.e., one main controller and various replicas
of it) to realize the control plane. This way, if the main SDN
controller fails or crashes, any of the replicas can immediately
take over, leading to more robust and secure SDN networks.
Another possible DoS attack against our solution could be
carried out by adversaries who aim to exhaust all available IP
addresses. However, as adversaries cannot know the popularity
of nodes and links, they cannot influence EqualNet to create
a large number of virtual nodes.

VIII. CONCLUSION

Protecting networks from Link Flooding Attacks (LFAs)
is challenging. Past work has addressed some parts of this
problem, but limitations of security and usefulness still remain.
We have introduced a practical and secure network topology
obfuscation solution which prevents adversaries from targeting
bottleneck nodes and links by equalizing tracing flow densities.
Our solution retains the utility of path tracing information to
ensure that network operators can still use path tracing tools
to debug their networks.
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APPENDIX A
OFFLINE OBFUSCATION ALGORITHM

In this section, we detail the steps followed by EqualNet to
estimate the number of virtual nodes needed and decide where
they need to be created (see Algorithm 2).

Initially, it takes as input the logical topology G, the
leakage reduction τI (e.g., 40%), and the number of fixed
virtual nodes per real node virtualfixed (e.g., 4) and then
computes the maximum leakage allowed leakallowed based
on the current leakage leakcurrent and the specified leakage
reduction (lines 1 to 2). Next, it proceeds to adding a fixed
number (virtualfixed) of virtual nodes to all real nodes, and
to connecting those nodes with their neighbors, forming virtual
links (lines 3 to 5).

The algorithm is executed for as long as the current topol-
ogy leakage leakcurrent is above than the allowed leakage
leakallowed (line 6). To reduce leakcurrent, the algorithm first
chooses the node ncurr whose flow density is the highest
among all nodes (line 7), retrieves its existing virtual nodes
N ′

curr and checks whether the flow density of (at least) one of
them is below than the allowed leakage leakallowed (lines 8
to 11). If so, the algorithm chooses such virtual node (denoted
as n′

curr) to lower the current leakage leakcurrent (lines 12 to
13). Otherwise, it does so by creating a new virtual node n′

curr
(upon checking that there are IP addresses available in the
corresponding subnet) (lines 14 to 18). Either with the existing
or the newly-generated virtual node, the algorithm aims to
equalize the flow density of the current node. For this purpose,
it creates virtual nodes in all its previous neighbor nodes (lines
19 to 20). This task is achieved through the sub-procedure
EQUALIZEFLOWSFORPREVNODES (line 23). To that end, it
first explores all previous nodes for a given current node ncurr

(line 24). For each previous node nprev , it attempts to find a
previous virtual node n′

prev that is connected with the current
virtual node n′

curr (lines 24 to 25). If no previous virtual node
is found, it creates a new virtual node for the previous node (as
long as there are IP addresses in the previous node) (lines 26
to 30). Following this, it creates an incoming virtual link and
splits the flow density to the virtual link l′in and real incoming
link lin equally (lines 31 to 33). This process is repeated in a
recursive way until virtual nodes are created for all previous
nodes (line 34), and then also in the opposite direction for all
its subsequent nodes (lines 35 to 47). Whenever a single loop is
finished (lines 6 to 20), the algorithm recomputes the current
leakage leakcurrent (line 21) and repeats this process again
until the leakage is reduced to the desired leakage leakdesired.

Algorithm 2 Offline virtual node estimation
Require:

Logical topology G = (N ,L, fdN , fdL),
Leakage reduction (%) τI ∈ [0, 100],
Number of fixed virtual nodes per real node virtualfixed

Ensure: Virtual topology G′
1: leakcurrent ← |max(fdN )−min(fdN )|
2: leakallowed ← (100− τI) · leakcurrent

3: N ′
fixed ← CREATEVIRTUALNODESINALLNODES(virtualfixed)

4: L′
fixed ← CREATEVIRTUALLINKS(G,N ′

fixed)
5: N ← N ∪N ′

fixed, L ← L ∪ L′
fixed

6: while leakcurrent > leakallowed do
7: ncurr ← argmaxn∈N (fdN (n))
8: N ′

curr ← GETEXISTINGVIRTUALNODES(ncurr,N )
9: n′

curr ← ∅
10: for all n′ ∈ N ′

curr do
11: if fdN (n′) < leakallowed then
12: n′

curr ← n′

13: break
14: if n′

curr = ∅ then
15: if IPADDRESSAVAILABLE(ncurr) = false then
16: return G′
17: n′

curr ← CREATEVIRTUALNODE(ncurr)
18: N ← N ∪ n′

curr

19: EQUALIZEFLOWSFORPREVNODES(G, ncurr, n
′
curr)

20: EQUALIZEFLOWSFORNEXTNODES(G, ncurr, n
′
curr)

21: leakcurrent ← |max(fdN )−min(fdN )|
22: G′ ← (N ,L, fdN , fdL)
23: procedure EQUALIZEFLOWSFORPREVNODES(G, ncurr, n

′
curr)

24: for nprev ∈ G.predecessors(ncurr) do
25: n′

prev ← GETCONNECTEDVIRTUALNODE(nprev, n
′
curr)

26: if n′
prev = ∅ then

27: if IPADDRESSAVAILABLE(nprev) = false then
28: N ← N/n′

curr

29: return G′
30: n′

prev ← CREATEVIRTUALNODE(nprev)

31: l′in ← (n′
prev, n

′
curr), lin ← (nprev, ncurr)

32: L ← L ∪ l′in
33: fdL(l′in)← fdL(lin)/2, fd

L(lin)← fdL(lin)/2
34: EQUALIZEFLOWSFORPREVNODES(G, nprev, n

′
prev)

35: procedure EQUALIZEFLOWSFORNEXTNODES(G, ncurr, n
′
curr)

36: for nnext ∈ G.successors(ncurr) do
37: n′

next ← GETCONNECTEDVIRTUALNODE(nnext, n
′
curr)

38: if n′
next = ∅ then

39: if IPADDRESSAVAILABLE(nnext) = false then
40: N ← N/n′

curr

41: return G′
42: n′

next ← CREATEVIRTUALNODE(nnext)

43: l′out ← (n′
curr, n

′
next), lout ← (ncurr, nnext)

44: L ← L ∪ l′out
45: fdL(l′out)← fdL(lout)/2, fd

L(lout)← fdL(lout)/2
46: fdN (n′

next)← fdN (nnext)/2
47: EQUALIZEFLOWSFORNEXTNODES(G, nnext, n

′
next)

APPENDIX B
RESISTANCE TO SUBNET INFERENCE ATTACKS

Important to the security of EqualNet is that adversaries
have no means of inferring how many nodes each subnet
contains. Otherwise, they could get an idea of how popular
are the nodes inside a given subnet. One of the reasons why it
is hard for adversaries to obtain this information is because
network operators no longer rely solely on the three well-
known IP classes to allocate IP addresses to their nodes.
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(69.69.207.38)  01000101 01000101 110 01111 001001 10
(69.69.207.37)  01000101 01000101 110 01111 001001 01

Inference range (k-m+1)m=20, k=30

Fig. 19. An example of two IP addresses whose first 30 bits are identical
(i.e., k = 30). We assume the shortest prefix m is 20. The dotted box denotes
the inference bit range (k −m+ 1).
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Fig. 20. The probability P (Xi|E) as a function of the inference bit range
k −m when P (Ai) follows a uniform distribution, 1

k−m
.

Instead, they commonly use a method known as Classless
Inter-Domain Routing (CIDR) which results in a more optimal
usage of IP addresses (which are known to be scarce). With
CIDR, it is also much more difficult for adversaries to guess
which masks are being used.

While adversaries cannot obtain information about the used
network masks from the IP addresses in the tracing responses
they collect, they can conduct subnet inference attacks to
estimate the probability that two IP addresses belong to the
same subnet. We model this probability as follows: Let E be
an event where two IP addresses have the same first k bits and
Xi be an event of having the network mask i ∈ {1, 2, ..., k}.
Based on the Bayes’ theorem, the probability of having the
network mask i given the event E is defined by:

P (Xi|E) =
P (E|Xi)P (Xi)

P (E)
, (1)

Thus, it is calculated by the likelihood P (E|Xi) and the priors
P (E) and P (Xi). We define the likelihood as follows:

P (E|Xi) =
1

2k−i
, (2)

as it is the conditional probability of an event of observing
the two IP addresses having the k-identical bits given that the
mask is i. Thus, Equation (1) is calculated by:

P (E|Xi)P (Xi)∑
j P (E|Xj)P (Xj)

=
1

2k−iP (Xi)∑
j

1
2k−j P (Xj)

, (3)

where j ∈ {1, 2, ..., k}. Now consider a more specific case in
which the adversary assumes that the prefix is more likely to
be i > m (considering the shortest prefix that a single interface
can have within an AS, e.g., /20). Also, let Ai be an event that
an adversary chooses a prefix i. Based on the assumption, the
probability that the adversary chooses a correct prefix in the
range m to k is:

k∑
i=m

P (Ai)
1

2k−iP (Xi)∑
j

1
2k−j P (Xj)

(4)

If we assume that P (Xi) and P (Ai) follow a uniform
distribution (i.e., all masks in the range are equally likely), the
probability indicated by Equation (4) depends on the variable
m and k. We define k−m+1 as the inference bit range which
corresponds to the set of possible masks that the adversary
can choose (see Figure 19). Note that the longer the range,
the lower the probability is of correctly guessing if two IP
addresses belong to the same subnet. For example, an inference
bit range equal to 10 bits gives adversaries a probability of
selecting the mask correctly of 1% probability, as shown in
Figure 20. The results obtained may seem counter-intuitive
because one would expect that having very similar IP addresses
is the worse case for EqualNet. However, as with CIDR any
network mask is possible, the best case for EqualNet is when
both IP addresses are very similar (since the probability of
adversaries discovering the correct mask mask is lower).

We conclude that it is important for network operators
to carefully plan not only their IP assignments but also the
way IP addresses are allocated to virtual nodes in order to
offer strong protection against such attacks. For example,
network operators can deliberately assign real nodes similar IP
addresses (e.g., 10.0.2.102 and 10.0.2.98) whose subnets are
different (e.g., /24 and /29) by choosing the first five bits in the
host part in 10.0.2.102 such that they match the corresponding
bits in the network part of 10.0.2.98. In such a case, adversaries
would most likely believe that these two IP addresses belong
to the same subnet when actually they are part of different
subnets. Similarly, network operators can assign IP addresses
to virtual nodes (e.g., originating from a real node whose
prefix is /24, for example, 10.0.2.62/24) such that some of
their bits in the host part match one or more existing subnets
in the network. To that end, network operators could instruct
EqualNet so that it keeps the first four bits in the host part fixed
(to simulate a /28 prefix) and chooses any IP address available
in the remaining host bits, e.g., 10.0.2.126, and 10.0.2.127. By
doing this, the adversary is likely to believe that these two IP
addresses belong to the same subnet (with prefix /28) when
actually they are virtual nodes of a real node with prefix /24.

APPENDIX C
DISCUSSION

Can LFAs be prevented by blocking tracing packets?
One possible mitigation against LFAs would be to disallow
path tracing tools like traceroute. However, path tracing tools
are fundamental to enable network monitoring and debugging,
giving network operators the ability to detect incorrect/sub-
optimal routing [41], [26], understand network interconnec-
tions [28], [19] or reason about abnormal link latencies [27].
A more reasonable option would be to restrict the usage of
such tools so that only other (external) network operators can
use them. This could be achieved through the use of specially-
configured firewalls used for preventing tracing packets from
being sent to network devices. Yet, this approach has several
limitations regarding how to verify the legitimacy of incoming
traceroute packets, which hampers its adoption. On the one
hand, if a simple, non-cryptographic access control mechanism
was used (e.g., one that authorizes tracing packets based on
their source IP address), adversaries who send tracing packets
containing the network identifiers used by (external) network
operators could circumvent the firewall and send tracing pack-
ets to the network. Furthermore, as tracing packets can be
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realized using packet types (e.g., ICMP, UDP and TCP) and
ports, it would not be easy for network operators to configure
firewalls such that they block tracing packets only. On the other
hand, if a cryptographic-based access control mechanism was
used, one would require to maintain a large and up-to-date list
of cryptographic keys of all (external) network operators who
are allowed to use such tools in the network. The main problem
with this approach is that it would be very difficult to manage,
would be prone to attacks and would considerably increase
the network’s overhead, e.g., network devices (or middleboxes)
would have to perform cryptographic operations to verify the
legitimacy of every single incoming tracing packet before it is
forwarded to the networking devices.

Does EqualNet protect inter-AS links? Currently, Equal-
Net does not conceal inter-AS links since this is a task that
would require close collaboration between network opera-
tors [38], [36]. In future work, we will investigate how to
extend EqualNet to obfuscate those links as well as how
to incentivize distinct ASes to collaborate together for this
purpose.

Can DNS information affect the security of EqualNet?
So far, the security of EqualNet (and all previous network
obfuscation solutions) relies on the fact that ISPs allocate DNS
names to IP addresses that do not leak any information about
the routers. However, in practice ISPs typically assign DNS
names following standard conventions, as described by Spring
et al. [40]. While naming conventions are subject to the whims
of ISPs and DNS databases, they are not always kept up to date
(which mitigates this issue to some extent). In future work we
will explore possible ways of assigning DNS names without
revealing any information to adversaries.
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