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Abstract— Textual data mining of open source intelligence on
the Web has become an increasingly important topic across
a wide range of domains such as business, law enforcement,
military, and cybersecurity. Text mining efforts utilize natural
language processing to transform unstructured web content into
structured forms that can drive various machine learning appli-
cations and data indexing services. For example, applications
for text mining in cybersecurity have produced a range of
threat intelligence services that serve the IT industry. However,
a less studied problem is that of automating the identification
of semantic inconsistencies among various text input sources.
In this paper, we introduce GapFinder, a new inconsistency
checking system for identifying semantic inconsistencies within
the cybersecurity domain. Specifically, we examine the problem
of identifying technical inconsistencies that arise in the functional
descriptions of open source malware threat reporting informa-
tion. Our evaluation, using tens of thousands of relations derived
from web-based malware threat reports, demonstrates the ability
of GapFinder to identify the presence of inconsistencies.

Index Terms— Cyber threat intelligence, CTI, inconsistency.

I. INTRODUCTION

AS THE frequency and sophistication of cyber attacks
continue to rise, so too has grown the interest in services

that produce cyber threat intelligence (CTI). Recently, several
research projects have proposed CTI related frameworks and
approaches [16], [21] to automatically analyze and identify
advanced attacks. For example, TTPDrill suggested a way to
analyze reported attack scenarios and derive possible defense
methods automatically [16]. In addition, Liao et al. proposed
an approach to analyzing indicators of compromise (IOC)
automatically, and then used this information to derive efficient
methods for understanding diverse attack scenarios [21].

One underlying commonality among these and other pro-
posed CTI methods is a central reliance on publicly available
information, such as blog articles, research papers, and security
reports. Indeed, the timeliness and accuracy of these CTI
methods (including their detection rate and accuracy) are a
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function of the quality of the web-mined information that
they invest. As such, an informed reliance on these services
poses an important question: Can one derive a quality metric
that captures the consistency and accuracy of the web-mined
information used to drive a CTI service? This question is the
starting point of our research work.

If we build a CTI system based on open source web
content, the most critical consideration is that of establishing,
where possible, the correctness of this information. At present,
however, automated consistency analysis for the correctness
of open information is not seriously considered when a CTI
system is built. This paper explores an approach that iden-
tifies correctness metrics within the domain of open source
intelligence reports regarding malware functional descriptions
from security blog crawling systems. For example, consider
a crawler that collects information about the Shylock mal-
ware from two different security blog sites A1 and B.2 One
text segment from site A reports that Initially discovered in
February 2011 by security firm Trusteer, Shylock delivers,
while another text segment from B reports that The Shylock
malware, named after a character from Shakespeare’s The
Merchant of Venice, was first discovered in September 2011.
While both text segments include a Shylock reference, each
mentions a different discovery date (February 2011 vs., Sep-
tember 2011). An ideal CTI system would be able to detect
the inconsistency, and if possible, determine which discovery
date is most likely to be accurate.

Verifying the correctness of information is a challenging
research topic, for which some schemes have been pro-
posed [7], [36]–[38] in some text mining domains. However,
existing schemes cannot be directly applied to vetting security
specific information for the following three reasons. First,
these existing schemes focus on verifying the correctness
between already-structured (formatted) data (e.g., height of
mountain, authors of a book), and they do not apply to
evaluating unstructured data. Unfortunately, the open source
information used to drive CTI services relies on unstructured
web text, written in natural language [13]. Therefore, some
specific language processing techniques, such as named entity
recognition (NER) and relation extraction (RE), for the cyber-
security domain are needed to extract structured values for
security information. Second, security information extracted
from unstructured texts still requires additional formalization.
If we extract data (e.g., nouns and verbs) from unstructured
texts, many different shapes of terms represent the same

1www.scmagazine.com/home/security-news/shylock-banking-malware-can-
detect-remote-desktops/

2www.ehackingnews.com/2012/08/shylock-trojan-injects-attackers-
phone.html
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meaning. For example, email and attachment are different
terms, but in terms of the infection method of malware,
both terms are based on the same technique, phishing. Thus,
we need to refine extracted data to normalize their forms
or make a dictionary for thesaurus of security terms. Third,
while one can derive a thesaurus of some security terms, other
relevant terms are more difficult to isolate semantic relations,
such as for malware names. Each malware may have several
aliases to refer to itself due to the different naming conventions
of antivirus (AV) vendors. For example, Conficker worm has
been assigned various parallel names from competing teams
that published independent analyses: Conficker (by Sophos,
ESET), Downadup (by Symantec), and Kido (by Kaspersky).
Therefore, we need to understand whether some specific
security terms are related to each other.

This paper proposes a systematic approach to detecting
inconsistencies in security information from multiple publicly
available sources. Our system, GapFinder, deconstructs this
problem into three main tasks: (i) the extraction of structured
data from unstructured text, (i i) a data refinement process
on the extracted data, and (i i i) the formulation of semantic
connections between malware aliases. First, the graph con-
structor, consisting of an entity tagger, relation builder, and
relation expander, derives security specific structured data
from unstructured text with consideration for cybersecurity
specific issues. For the extracted data, the graph constructor
builds malware graphs, which consist only of relations that
contain the same malware name. Second, the data formatter
performs a data refinement process on the data within the
malware graphs. The data extracted from unstructured text
are expressed with diverse shapes of terms to convey similar
meanings. To address this issue, the data refinement process
normalizes different terms with similar or identical mean-
ings into the same expression. Third, the malware graphs,
based on a single malware name, are disconnected from
each other. To compare the data in the malware graphs
that have different names but indicate the same malware,
the alias connector produces connections between malware
graphs that have alias relationships, such as between Conficker
and Kido.

Our evaluation, using tens of thousands of relations derived
from malware threat reports, demonstrates the ability of
GapFinder to identify the presence of inconsistencies. First,
most of the sources do not cover all aspects of the malware
description, requiring one to produce a robust description of
the malware through an aggregation of descriptions captured
among multiple sources. For example, Locky ransomware uses
five infection methods to propagate itself, and at least three
sources are needed to capture the full spectrum of its infection
methods. Second, many sources have made various claims
about the first detection date of malware, diverging from 1
month to 7 months. For example, while four sources claim
that Shylock was detected at February 2011, seven sources
insist that the malware was discovered in September 2011.

In summary, the contributions of our work are as follows:
• We present GapFinder that derives structured relations

from unstructured text about the four main features of
malware.

TABLE I

EXAMPLES OF INCONSISTENT CTI REPORT CLAIMS AMONG SOURCES
ON THE FIRST DETECTION DATE OF SHYLOCK MALWARE

TABLE II

THE RELATION-TYPES AND THE ENTITY-TYPES THAT

MAKE UP THE RELATIONS

• GapFinder addresses the inconsistency between any
forms of entities, structured or unstructured text, by infer-
ring common terms for different words with similar or
equivalent meaning.

• We evaluate GapFinder against 470K security reports and
find many inconsistencies in the four main features of
malware.

II. MOTIVATION AND TERM DEFINITION

A. Motivating Example

As cybersecurity incidents continue to grow in both volume
and sophistication [17], defenders now regularly respond to
these incidents with the publication of CTI reports. CTI
reports capture what is known about an incident, commonly
from a defensive perspective. Several previous studies have
used these reports to extract IOCs (e.g., malware signatures,
botnet IPs) [3], [21] or to develop automated and context-
aware CTI analytics [16]. While CTI analytics operate under
the assumption that the information within a report is accurate,
report providers (websites) do not guarantee the correctness of
their reports.

Table I presents parts of articles posted on three cyber-
security sources regarding when the Shylock malware was
first identified. While source A claims that Shylock was first
detected in February 2011, sources B and C assert that this
malware was first discovered in September 2011. In this paper,
we explore an automated approach to detecting inconsistencies
such as this in competing CTI reports.

B. Term Definition

Before the methodology in this paper is presented, let us
first define several key terms.

Definition 1 (Entity): An entity is something that has its
own identity. We consider only the entities classified as one
of the five types shown in Table II.
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Fig. 1. The architecture of GapFinder.

Definition 2 (Relation): A relation is an ordered pair of
the form (entity, entity), and the relation-type depends on the
types of entities constituting the relation, as shown in Table II.
A relation extraction is the task of extracting the semantic
relationships between entities from unstructured text on the
Web, more specifically on cybersecurity related websites (we
call them sources).

Definition 3 (Malware Graph): A malware graph is a
graph describing the behavior of malware in terms of the
relation-types defined in Table II. For each relation, the two
entities become nodes, and the relation between the two
entities becomes an edge. A malware graph consists of one
common node that refers to malware, and nodes that refer
to other types of entities. The edge between the nodes has
two attributes: the relation-type, and the source from which a
relation is extracted.

III. SYSTEM DESIGN

Figure 1 illustrates the overall architecture of GapFinder,
which consists of five main components: (1) data extractor,
(2) preprocessor, (3) graph constructor, (4) data curator, and
(5) information analyzer, and two databases for storing dif-
ferent types of data. We first present the overall workflow of
GapFinder, followed by a description of each component.

A. Overall Workflow

Let us consider the following real-world example involving
the extraction of Dyre malware security relations, and the
detection of inconsistencies among these relations. Figure 2
(read from top to bottom) provides a visual representation of
the workflow and components. First, the data extractor crawls
publicly available security related websites, and inputs the
fetched content into the preprocessor, which performs text san-
itization and applies a security-topic classification algorithm
to validate that the article is relevant to cybersecurity (step 2:
Preprocessor). Next, the relevant text is processed by the graph
constructor, which derives structured relations from the text
for some relation-types. Here, two types of relations, infec-
tion and detection, are extracted. The graph constructor then
constructs the malware graphs based on the malware names
(first entity of relation), Dyre and Dyreza. (step 3: Graph
Constructor). Next, the data formatter normalizes the format of
the nodes for the malware graphs (step 4-1: Data Formatter).
For example, “June” in the Dyre malware graph is normalized
into “2014-06.” The alias connector is then applied, linking

Fig. 2. The overall workflow of GapFinder. The gray boxes correspond to
the output of each component.

malware nodes that have different names but appear to indi-
cate the same malware (step 4-2: Alias Connector). Because
Dyre malware is also known as Dyreza and Dyzap [25],
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TABLE III

A DATASET OF UNSTRUCTURED TEXT

these different names should be linked to each other (to com-
pare the nodes on different malware graphs). Finally, the infor-
mation analyzer finds an inconsistency between nodes of
the same type in the connected malware graphs (step 5:
Information Analyzer). Here, the two date nodes, “2014-06”
and “2014-09,” make different claims about the detection
date of Dyre. According to the inconsistency definition for
the detection date of malware, we can infer that there is an
inconsistency between these two date nodes.

B. Data Extractor and Preprocessor

1) Data Extractor: The data extractor is essentially a
crawler designed to collect articles from a set of cyberse-
curity websites. For each website, it explores all available
links. Table III shows a summary of our collected dataset.
The data extractor crawled roughly 474K articles from 119
sources, and the publication dates of the articles ranged from
January 2001 to December 2018.

2) Preprocessor: The content of each article scraped in the
data extractor includes many noisy characters (e.g., HTML
tags, hyperlinks). To extract clean text, a text sanitizer is
applied, which isolates the text using a set of regexes.

A second preprocessing step performs topic validation to
ensure that articles that enter the dataset are indeed cyber-
security related. Although we choose cybersecurity websites
as crawling targets, it is possible that the main topic of
a published article is not security. Thus, we designed a
topic classifier to sift out non-cybersecurity articles from our
data. The topic classifier operates in two phases: (1) word
representation, and (2) article classification. First, it trains
a Doc2Vec model [20] with the headlines of the collected
articles. The Doc2Vec model, which is a word embedding
algorithm, generates vector representations of sentences based
on the words in the sentences, and places sentences with
similar meaning close to each other in a vector space. Because
the headline implies the main idea of an article, it is the
most appropriate sentence for classifying the article. To obtain
a more accurate Doc2Vec model, we removed digits and
stop words that had little meaning (e.g., “is,” “the”) from
the headlines. Next, the topic classifier runs a support vector
machine (SVM) to classify cybersecurity related pages. Here,
to train an SVM model, we used the vector representations
of 300 cybersecurity and 300 non-cybersecurity
articles as features, and tested the model with another 600
articles (300 articles for each case). The validation showed
that the classification provided high precision (94%) and recall
(95%). With this approach, we removed approximately 54K
non-cybersecurity articles. Finally, the articles classified as the
cybersecurity are stored in the article DB, and are used
as the input for the graph constructor.

Fig. 3. The output of NLP tasks on the sentence “Locky often spreads via
email attachments.” The value in parentheses indicates the PoS tag of the
word.

C. Graph Constructor
Through the data extractor and the preprocessor, GapFinder

collects large volumes of security related sentences. As these
extracted sentences are unstructured data, they must be
structurally normalized prior to processing. To do this, one
could consider leveraging existing information extraction (IE)
techniques [1], [2], [10], [15], [24], [35]. However, these
techniques are not ideally suited to addressing the domain
specific nature of information that arises in the cybersecurity
domain. While there are some approaches [18], [19] that
extract security-relevant information using existing IE tech-
niques [10], Liao et al. showed that a direct application of
these techniques led to low classification performance in terms
of precision (around 70%) and recall (less than 50%) [21].
Thus, we designed the graph constructor, consisting of the
entity tagger, relation builder, and relation expander to derive
structured data from unstructured text with consideration for
security specific issues.

1) The Relation-Types to Be Addressed in This Work:
We focus on extracting structured data about the five most
mentioned malware features in the articles. To determine
the malware features, we group the verbs, which are placed
adjacent to malware names in sentences, into several clusters
based on the semantic similarity between the verbs. This
approach was derived from the observation that the verbs
placed between the subject of action (i.e., malware) and the
object of action are mainly used to describe the type of action.

We first construct a malware dictionary, consisting of 398
well-known malware names, based on the Wikipedia pages
belonging to the Malware category and all its sub-categories.
We then perform a dictionary lookup on the sentences stored in
the article DB to find sentences containing the malware names.
Second, for the filtered sentences, we identify the verbs that
are grammatically closest to the malware name through two
natural language processing (NLP) tasks: part-of-speech (PoS)
tagging and dependency parsing. The PoS tagging determines
the PoS of words, and the dependency parsing represents the
grammatical structure of sentences. Figure 3 shows the output
of NLP tasks on the sentence “Locky often spreads via email
attachments.” From the malware name “Locky,” we move
toward the parent word until the word whose PoS tag is the
verb (e.g., VB, VBZ) is first detected. Here, we derived the
verb “spreads” from the sentence. Finally, we perform word
clustering to group the identified verbs with similar meanings.
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TABLE IV

THE RESULT OF WORD CLUSTERING BASED ON THE SEMANTIC
SIMILARITY BETWEEN THE VERBS

To be specific, we train a Word2Vec model [23] with the
words in the cybersecurity articles. The trained model places
the words that share similar contexts and semantic meanings
in adjacent positions. We then use the vector representation
of each verb as a feature, and determine K, the number of
clusters, using the average silhouette method [27].

Table IV shows the five largest clusters in terms of the
frequency of verbs belonging to the same cluster and the
top three verbs belonging to each cluster. The topics of these
clusters are assigned based on the verbs that belong to each
cluster. The largest cluster is related to the reporting topic,
which includes the verbs that most often appear in quotes.
However, it is obviously not related to malware features.
On the other hand, the remaining four clusters address malware
features: (1) the first detection date of malware, (2) the
infection methods used by malware, (3) the CVE identifiers
related to malware, and (4) the target platforms of malware.
Thus, we focus on extracting structured data on the remaining
four clusters.

2) Entity Tagger: Traditional IE systems [26], [31], [34]
perform a two-phase process to derive structured data from
unstructured text. First, the NER model annotates the entity
type of the words in a sentence. Second, the RE model
determines the semantic relationships between a pair of entities
recognized by the NER model. Likewise, we start by recog-
nizing the entities of interest, defined in Table II, from the
sentences stored in the article DB. To do this, we develop
a cybersecurity specific entity tagger based on a well-known
NER model [10] and also integrate a coreference resolution
module tailored for the cybersecurity domain.

The NER model based on the conditional random
field (CRF) assigns a sequence of words to one of the follow-
ing labels: (1) MW (malware), (2) CV (CVE identifier), (3) IM
(infection method), (4) TP (target platform), (5) DA (date), and
(6) O (others). For example, as shown in Figure 4, given the
input sentence, the words “Ramnit” and “emails” are annotated
with MW and IM, respectively, and others are annotated with O.
Just like any other classifier, the NER model uses several
criteria to distinguish the entities of our interest from the other
entities. Two simple examples of entity-distinguishing criteria
are 1) whether the first letter of the word is capitalized, and
2) what the words are before and after the current word. In
cybersecurity articles, the first letter of a malware name is
usually capitalized, and a malware name is usually located
before the types of malware (e.g., trojan, botnet) or the word
“malware.”

Fig. 4. The NER model that assigns a sequence of words with one of the
labels (MW, CV, IM, TP, DA, and O).

Fig. 5. The process of coreference resolution with a real-world example.

A generic NER model often misclassifies a malware entity
as O if it does not consider the malware’s pronouns. For
example, as shown in Figure 5, after the malware “Dridex”
is mentioned at the beginning of the article, the malware type
“Trojan” is used as a pronoun to refer to it. However, a generic
NER model does not recognize “Trojan” as MW even though
it indicates the malware entity “Dridex.” As a result, while
“Dridex” is annotated with MW, “Trojan” is annotated with O.
This misclassification prevents the appearance of new entity
pairs that may form a MW-DA relation.

To address this issue, we design a coreference resolution
algorithm that is tailored to the cybersecurity domain. From
the beginning of the article, (1) we look for a malware’s
proper noun, labeled with MW, by the NER model. (2) We
then look for a noun that indicates a malware type within
three words back and forth around the malware name found
in (1). Currently, we consider four well-known malware types
(i.e., trojan, worm, botnet, and ransomware). If there is no
word indicating a malware type, the word “malware” is used
by default. From our observation, after the first occurrence of
a malware name in an article, the type of malware found in
(2) is typically used to refer to the malware. Thus, (3) if the
malware type appears after the sentence containing a malware
name, it is replaced with the malware name, and the label is
also modified from O to MW. As shown in Figure 5, “Trojan” is
replaced with “Dridex,” and the label of “Trojan” is modified
from O to MW.

3) Relation Builder: The goal of an RE model is to extract
the semantic relationships between the entities recognized by
an NER model. However, existing RE models [8], [32] do not
verify the labels of entities, which could lead to the extrac-
tion of malware-irrelevant relations such as (Huawei, 1987).
To address this issue, we introduce a relation builder that
performs the verification of entity labels before extracting the
structured relations among the entities.

We observed that some words indicating IT companies
(e.g., Huawei, OpenDNS) were annotated with MW, but they
should have been annotated with O. To rectify the incorrect
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TABLE V

THE FIVE WORDS CLOSEST TO “DYRE” AND “HUAWEI”
IN THE WORD2VEC MODEL

labeling, we perform K-means clustering [14] with the vector
representations of the entities annotated with MW. Our intuition
is that the words indicating malware names and non-malware
names are used in different contexts in cybersecurity articles.

Table V shows the five words closest to “Dyre” and
“Huawei” in the Word2Vec model. While the words related to
Dyre are malware names, most of the words related to Huawei
are the names of IT companies. Using this feature, we perform
K-means clustering to partition the entities annotated with MW
into two clusters, malware and non-malware, and modify
the labels of the entities that are clustered as non-malware
with O. With this approach, we corrected many erroneous
labels of malware irrelevant entities, such as the names of
IT companies and the names of hackers.

Then, the RE model assigns the relations between verified
entities with one of the following types: (1) exploitation,
(2) infection, (3) target, (4) detection, and (5) others. For
example, a pair of entities (Ramnit, email) in Figure 4 is
annotated with the Infection type. The syntactic and
lexical feature set for classification is taken from the previous
works [24], [26], [32], [34], and some of them are presented
below.

• (Syntactic) Lemmas of words in the dependency path.
• (Syntactic) Sequence of dependency labels in the depen-

dency path connecting the heads of the entities.
• (Lexical) PoS tags of the words in a sentence.
• (Lexical) Sequence of words between the entities.

4) Relation Expander: Generally, since multiple malwares
are mentioned in a single cybersecurity article, our entity
tagger and relation builder focused on extracting relations
between entities mentioned in the same sentence. However,
AV vendor reports mainly deal with a single piece of malware
throughout the report. Thus, the first entity (malware) of the
relation defined in Table II is predetermined in a single report.
By finding a second entity of interest (one of CV, IM, TP,
and DA) within a report, we can build relations between the
entities even if they do not appear in the same sentence.

Figure 6 shows an example of AV vendor reports [33]
and how the relation expander works. A report usually con-
sists of three divisions: (i) title, (i i) structured data, and
(i i i) unstructured data. The title is the name of malware to
be described throughout the report. From this, we extract
the first entity of relations. However, most vendors name
malwares with detailed malware information, such as target
platform (e.g., w32, Linux) and malware type (e.g., trojan,
ransom). To obtain only a malware family name, we designed
an algorithm based on the observation that there is a somewhat

Fig. 6. An example of AV vendor reports, and the process of relation
expansion.

Fig. 7. Unrefined Shylock malware graph.

unified order of naming malware among AV vendors: target
platform (P) is placed first, followed by malware type (T),
family name (F), and variant version (V) (the details are
shown in Appendix). We next derive the second entities from
structured and unstructured data. Since the structured data is
composed of a property:value pair, we directly read the values
of the property and annotate them with proper entity-types.
For unstructured data, the entity tagger annotates all words in
sentences with one of the entity-types. Finally, we build rela-
tions between the malware name and the words annotated with
one of the entity-types (CV, IM, TP, and DA). For example,
an exploitation relation (Ramnit, CVE-2013-0422) would be
formed between “Ramnit” in the title and “CVE-2013-0422”
annotated with CV.

5) Malware Graph Generation: For the extracted relations
from the relation builder and relation expander, the graph
constructor builds the malware graphs based on the relations
of our interest and stores them into the graph DB, which
is used as the input for the data curator. For each relation,
two entities become nodes, and the relation between the two
entities becomes an edge in the graph. If there is more than
one relation consisting of the same entity pair, multiple edges
are created between a single pair of nodes.

Figure 7 shows an example of malware graphs. The node
color indicates the type of entity: red for malware, blue for
infection method, orange for target platform, yellow for CVE
identifier, and green for date. The attributes of the edges are
omitted to improve the visibility of the graph.
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Fig. 8. The data refinement process to make different words with a similar
meaning into the same representation.

D. Data Curator

There are two challenges to be tackled before finding
data inconsistency in malware graphs. First, while the data
used in existing truth discovery studies [38], [39] follow a
specific format, the nodes of the malware graphs are raw data
that require a form of normalization. Some node types have
different shapes to indicate similar or equivalent meanings.
Therefore, these semantically similar nodes should be refined
with the same representation. Second, since malware graphs
are disconnected from each other, the nodes on different graphs
cannot be compared with each other. However, some malwares
are referred to by a number of different names, which are
independently derived by AV vendors. Therefore, an additional
process is required to compare nodes from different malware
graphs that refer to the same malware. We now present a data
curation process to address these challenges.

1) Data Formatter: The data formatter performs data refine-
ment to create common expressions for all nodes with similar
or identical meanings. From our observation, there are two
types of nodes that need to be refined: (i) infection method,
and (i i) date. Since the CVE identifier has a standard format,
and the target platform is one of a finite number of operating
systems, no additional data refinement process is required.

Figure 8 shows a part of the Locky malware graph, con-
sisting of two infection relations, (Locky, emails) and (Locky,
documents). While the two infection method nodes are differ-
ent words, in a broad sense, they mean the same infection
technique “phishing,” shown in the upper left sentence of
Figure 8. Therefore, we need to refine different words with
a similar contextual meaning into a single representation.

To do this, we first classify infection methods into six
categories: (1) phishing, (2) network, (3) removable (device),
(4) exploit (kit), (5) social, and (6) drive-by (download).
We then build the category tables with the five words closest
to each category in the Word2Vec model. For each infection
method node stored in the graph DB, if it corresponds to one
of the words in a category, it is replaced with the category
to which the word belongs. To consider the case where the
node is used in plural form, we normalize the node into its
base form using lemmatization. From the data refinement,
both the words “emails” and “documents” belonging to the
Phishing category are transformed into the same word
“Phishing,” shown in Figure 8.

Second, there are various ways to express time information.
For example, time could be expressed with a relative (e.g., last

Fig. 9. The two-phase data refinement process to obtain absolute and
formatted date nodes. The date in parentheses of article indicates the date
of writing.

September) or absolute expression (e.g., September 2014). The
year could also be omitted, or the month could be abbreviated
(e.g., January to Jan). Therefore, to compare the date nodes
of the malware graphs, we need to make unrefined date nodes
into absolute and formatted time expressions.

Figure 9 shows a two-phase process to obtain absolute
and formatted date nodes. First, the data formatter computes
the absolute times of unrefined date nodes (we call them
input) through the time expressions contained in the inputs.
For example, the word “last” in the input “last September”
indicates the most recent past “September” from the date of
writing. Here, since the date of writing is April 2015, “last
September” should be September 2014. If the date node does
not contain the year information, we consider that the year
of the node is the same as the year of the date of writing.
For example, as shown in the Figure 9, the input “January”
is transformed into “January 2007” with reference to the year
of the date of writing (2007-08). Second, the data formatter
modifies the absolute time expression into a formatted one
(i.e., yyyy-mm) using the predefined rule set [4]. Finally,
we get the absolute and formatted date nodes, “2014-09” and
“2007-01,” from “last September” and “January,” respectively.

2) Alias Connector: While most entities around us are
distinguished by a unique name (e.g., company, person),
malwares commonly have many aliases due to the different
naming conventions of AV vendors. This feature prevents
the nodes related to the same malware from being compared
to each other, since malware graphs are separated based on
malware names. For example, according to the Conficker
Wikipedia page, Downadup is another name for Conficker.
However, as shown in the bottom of Figure 10, the nodes
in the two graphs cannot be compared with each other
(i.e., 2008-10 vs., 2008-11). To address this problem, we need
to connect the malware graphs with different names indicating
the same malware.

Figure 10 shows the procedure for linking different malware
graphs. (1) We first extract (malware, malware) pairs that
have alias relations from the Web. Here, we use the malware
dictionary constructed from malware related Wikipedia pages
(see in Section III-C) as the data source. Since the pages
mainly consist of two data structures: (i) unstructured data
(i.e., body section), and (i i) structured data (i.e., infobox),
we apply different methods to extract alias relations depending
on the data structure. For the unstructured data, we leverage
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Fig. 10. The procedure for linking different malware graphs.

our graph constructor since the entity tagger could recognize
the malware name in unstructured text. Moreover, most alias
relations are represented with some limited phrases such as
“also known as”, “called”, and “named.” This distinctive
feature enables the relation builder to extract alias relations
more effectively. For example, an alias relation (Conficker,
Downup) is extracted from the part of the sentence “Conficker,
also known as Downup, …” on the Conficker page. For the
structured data, alias relations are obtained by mapping the
title of a Wikipedia page (i.e., malware name) into the values
corresponding to “Aliases” in the infobox of the page. For
each alias relation, (2) the alias connector generates an edge
between two malware entities that have an alias relation (red
dotted line in Figure 10).

E. Information Analyzer

After refining the nodes and linking between malware
aliases, the information analyzer detects whether data incon-
sistency exists or not for each connected malware graph.
If there is only one correct and definite answer to a question,
we can easily define an inconsistency: If two answers are
simply different for the same question, there is an incon-
sistency between these two answers. For example, consider
the following question: “Where is the capital of the United
States?” If one receives two different answers, for example,
Washington DC and New York, detecting the inconsistency is
straightforward. However, this simple comparison cannot be
directly applied to the cybersecurity domain for two reasons:
(i) multiple truths, and (i i) the uncertainty of truth.

First, most malwares use two or more infection methods
to compromise benign hosts and target two or more operating
systems. For example, Conficker spreads via removable media
and network shares [9]. Therefore, it is difficult to determine
if there is an inconsistency even though each node is different.
Second, since AV vendors conduct independently analyses
and do not share their findings with each other, the first
detection dates of a malware outbreak may vary from vendor

Fig. 11. Refined Shylock malware graph.

to vendor. Therefore, there is no definite correct answer for
the detection date. To address these matters, we introduce two
types of inconsistencies: (i) set inconsistency for exploita-
tion, infection, and target relation and (i i) range inconsis-
tency for detection relation with the example malware graph
in Figure 11, which has completed the data curator step.

Set inconsistency refers to a situation in which two or more
sources are needed for the construction of the base set of a
specific edge-type. First, we build the base sets for each edge-
type. Our work defines the union of nodes belonging to a
specific edge-type as the base set for that type. For example,
in Figure 11, the base set of infection-type is composed of
five nodes: removable, network, social, drive-by, and exploit.
For each edge-type, we then remove the nodes covered by the
source that accounts for the largest proportion of the base set
and check if there are any remaining nodes in the base set.
If the base set is not empty, it means that at least two sources
are required to construct the base set. In the example above,
Threatpost, which accounts for the largest proportion of the
base set for infection-type, covered four infection methods.
However, the fact that Shylock malware uses an exploit kit is
only mentioned by SecurityWeek. Therefore, we consider that
there is a set inconsistency in the Shylock malware graph.

Range inconsistency refers to a situation where there are
one or more date nodes with a time difference of at least
one month from a base date (we call them inconsistent
dates). First, we select the base date from all date nodes.
Our work defines the date node with the highest degree as
the base date. However, a base date that contains only year
information (e.g., 2011) makes it difficult to find out the incon-
sistency between the nodes that have month information (e.g.,
2011-02 vs., 2011-09). Therefore, we also consider whether
the date node contains month information when selecting the
base date. As a result, the “2011-09” node becomes the base
date in Figure 11. We then check whether each date node
has a time difference of more than a month from the base
date. In the example above, since the time difference between
the “2011-02” node and the base date is seven months,
we consider that there is a range inconsistency in the Shylock
malware graph.

IV. EVALUATION

A. Dataset
To train the graph constructor, we first construct a ground

truth dataset by manually annotating the entities and their
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Fig. 12. Examples of annotated sentences.

TABLE VI

DATASETS OF STRUCTURED RELATIONS

relations defined in Section II-B. To do this, for each relation-
type, we randomly extract 1, 000 sentences that contain the
verbs presented in Table IV from the article DB, which is
likely to contain relations within the sentences. For each
sentence, we employed five computer science graduate stu-
dents to manually annotate the sentences based on references
made to the following entity types: 1) describes a malware,
2) references a CVE, 3) discloses a method, 4) identifies a plat-
form, and 4) references a date. In addition, the students were
asked to produce relation connections, as shown in Figure 12.
Disagreements in these manually produced annotations were
subsequently resolved through a majority vote.

Table VI shows the training dataset (i.e., ground truth) used
for training the graph constructor and the dataset extracted
from the graph constructor.

B. Landscape

GapFinder extracted four types of structured relations from
unstructured text, and constructed malware graphs for each
malware. Table VII presents the five largest malware graphs
in terms of the degrees of malware nodes. In general,
we observed that the greater the impact of malware on indi-
viduals and communities (either by its spread or its potential
harm), the greater the number of articles about the malware
found by our crawler. In addition, the larger the number
of articles found for a given malware, the likelier it was
that structured relations on the malware would be derived.
Therefore, the scale of a malware graph seems predictive to the
potential social impact of that malware. For example, Stuxnet,
which targeted industrial control systems, and Conficker, had
a great impact on society, were ranked in the top five malware
graphs.

Table VIII shows the top five nodes with the highest
degree for three types of nodes. Among the CVE-type nodes,
CVE-2012-0158 is involved with the largest number of mal-
wares (e.g., Zbot, NetTraveler). In addition, all CVE identifiers
have high CVSS scores above 9.0. The common vulnerability

TABLE VII

THE FIVE LARGEST MALWARE GRAPHS IN TERMS
OF THE DEGREES OF MALWARE NODES

TABLE VIII

THE TOP FIVE NODES WITH THE HIGHEST DEGREE

FOR THREE TYPES OF NODES

Fig. 13. The heatmap of Jaccard similarity between the base sets of the
ten malware samples and the infection methods of these malware samples
mentioned in the ten sources.

scoring system (CVSS) [11] measures the severity of a CVE
identifier with a score between 0.0 and 10.0 (higher is more
critical). Among the method-type nodes, phishing was used by
the largest number of malwares. In fact, email have the largest
proportion of infection methods mapped to phishing (by the
data formatter), followed by spam. Finally, the Windows
family occupied the top five positions of the target platforms.
The word “Windows” accounts for the largest proportion
(40.6%), meaning that most articles do not precisely identify
the susceptible target platforms down to their specific OS
versions.

C. Understanding Inconsistency

GapFinder found several data inconsistencies among the
malware graphs. Here, we describe the forms of data incon-
sistency that were illuminated through this process.

1) Set Inconsistency: Figure 13 illustrates the heatmap of
Jaccard similarity between the base sets of the ten malware
samples and the infection methods of these malware samples
mentioned in the ten sources. Jaccard similarity is used to
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Fig. 14. The coverage of sources on the base set of given malware samples
in terms of exploitation relation.

Fig. 15. The coverage of sources on the base set of given malware samples
in terms of target relation.

measure the similarity of two sets, where the similarity is in
a range between 0 and 1. The value placed at (x, y) in the
heatmap indicates how much the infection method set on the
y-axis source covers the base set of the x-axis malware. The
higher the value, the higher the coverage. GapFinder identified
set inconsistencies in the nine malware samples, except for
Koobface. No source covered the base set of these malware
families single-handedly, and at least two or more sources are
required to construct the base set of the malware samples.
For example, the base set of Locky ransomware consists
of five infection methods, and at least three sources (i.e.,
securityweek, scmagazine, and zdnet) are required to fully
describe Locky’s base functionality. Alternatively, the site,
Threatpost, covers the base set of Koobface functionality (1.00
in Koobface row and threatpost column in Figure 13).

Figure 14 and 15 show the coverage of the top three sources
dealing with the base set of malware samples in terms of
exploitation and target relations. No source mentions all CVEs
related to these malware samples. Even the source covering the
largest proportion of the base set mentions only 62.0% of the
base set on average. For example, ZeroAccess needs exactly
three unique sources to cover the base set. The CVEs that each
source refers to are not mentioned in any other sources. In the
case of target relation, on average, the sources covering the
largest proportion of the base set addressed more than 80.1%
of the base set.

2) Range Inconsistency: Figure 16 shows the distribution
of date nodes, including a base date and inconsistent date
nodes, for ten malware graphs where range inconsistencies
were found. For the first six malware samples, the inconsistent
dates, which differ by one month from the base date (|x | = 1),

account for the largest proportion of the total inconsistent
dates. On the other hand, for the last four malware samples,
the inconsistent dates are far from the base date (|x | = 2
or |x | ≥ 3). For example, in the case of Ramnit malware,
while the base date is April 2010, two different inconsistent
dates are January 2010 and July 2010. They were extracted
from the sites Symantec and PCingredient, respectively. The
malware graph with the longest time difference between
the base date and inconsistent dates was Shylock malware:
February 2011 versus September 2011.

D. Case Study

In this subsection, we perform case studies on the data
inconsistencies that GapFinder found.

1) Set Inconsistency:
a) Use Case 1 (Inconsistency in CVE identifiers):

Figure 17 shows a part of Stuxnet malware graph consist-
ing of exploitation relations. Through the multiple edges
between the nodes “Stuxnet” and “CVE-2010-2568,” we deter-
mined that various sources mentioned that Stuxnet leverages
CVE-2010-2568. However, Stuxnet actually uses a large num-
ber of CVEs, which are only extracted from a few sources.
For example, the fact that Stuxnet uses CVE-2008-4250, which
is also used in Conficker botnet, was only collected from one
source. This kind of inconsistency between sources makes
it difficult to analyze the relationship between malwares and
CVEs. For example, if we had not collected the articles of the
marcoramilli (a blog source), we would not have noticed that
Conficker, which appeared in November 2008, and Stuxnet,
which appeared in June 2010, employed the use of a common
CVE vector.

b) Use Case 2 (Inconsistency in infection methods):
The Shylock malware spreads itself via five infection methods.
While three infection methods are mentioned in many sources,
drive-by downloads were addressed in two sources, and infec-
tion via exploit kit was addressed in one source. We observed
that, like other aspects of malware behavior, the depth and
breadth of this information varies from source to source.
Therefore, when analyzing malware behavior, we should con-
sider multiple cybersecurity sources to offset the information
that some sources do not cover.

2) Range Inconsistency:
a) Use Case 1 (Inconsistency in the same source):

Most range inconsistencies arise between dates mentioned
in different sources. However, even within articles from the
same publisher (e.g., from The Register), we found different
claims (i.e., 2013-08 vs., 2013-09) regarding the detection
date of Cryptolocker, shown in use case 1 of Table IX.
Most previous studies on truth discovery [6], [12], [36] find
trustworthy information using the following approach: (i) the
history of a source in producing reliable information results
in an increasing reputation metric for judging credibility, (i i)
the larger the number of credible sources that repeat an
assertion, the greater the probability is that the assertion is
accurate. However, the presence of inconsistency in the same
source makes it difficult to apply existing truth discovery
approaches to the cybersecurity domain, which could be an
open challenge.
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Fig. 16. The distribution of date nodes for ten malware graphs. The x in the legend is the time difference between a base date and inconsistent date nodes.

TABLE IX

THE THREE USE CASES RELATED TO RANGE INCONSISTENCY

Fig. 17. A part of Stuxnet malware graph consisting of exploitation relations.

b) Use Case 2 (Inconsistency in citation to the same AV
vendor): The use case 2 of Table IX shows the excerpts from
two articles citing the comments of AV vendors to describe
the first detection date of Shylock malware. The problem is
that two excerpts cite the same AV vendor (Trusteer), but the
time difference between the dates they claim is seven months
(i.e., 2011-02 vs., 2011-09). According to Trusteer, the object
of the citation, [29], Shylock malware was first discovered in
September 2011, which is also the base date of the malware.
Then, the first excerpt misquotes the AV vendor, Trusteer.
This also shows that trustworthy information would be bet-
ter found in more specialized sources in the cybersecurity
domain.

c) Use Case 3 (Inconsistency between malware aliases):
The use case 3 of Table IX shows why the alias connector
is needed to find data inconsistency. From the connected
malware graph between Dyre and Dyreza, we found three
different claims about the detection date of the malware

(i.e., 2014-06 vs., 2014-07 vs., 2014-09). In addition to the
malware names, there are numerous terms indicating the
same meaning in the cybersecurity domain. For example,
there are abbreviations such as EK for exploit kit, IE for
internet explorer. Therefore, a cybersecurity specific dictionary
is required to scale up malware graphs to more general
cybersecurity graphs.

V. DISCUSSION

As we designed our inconsistency checking system,
we addressed many language-specific issues to improve its
overall accuracy. However, areas for further improvement
remain. First, our focus has been on identifying data inconsis-
tency within malware-focused information sources. However,
as shown in prior work [8], there arise inconsistencies between
versions for the same vulnerable software name. There may be
inconsistencies within the various contexts of the cybersecurity
related information. In future work, we will seek to expand the
scope of relation-types.

Second, we tentatively defined the base date and set as
truth. However, the union of nodes (i.e., base set) and the
node with the largest number of degrees (i.e., base date) may
not be correct. If a malicious source indiscriminately posts
misinformation, the answer may be different. To address this
issue, there are some ways to determine the truth from nodes,
such as through a reputation-based weighting scheme. Future
work will need to consider this issue.

Finally, since existing truth discovery studies are based on
structured or formatted data, the data itself contains no noise.
However, since our work found data inconsistencies existing
in unstructured text, it is inevitable to avoid noises generated
during relation extraction. Therefore, while we filtered out
noisy relations to a substantial degree, there remains a need
to refine the extracted relations.
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VI. RELATED WORK

A. Cyber Threat Intelligence (CTI) With Open Information

Recently, researchers have proposed ways of automatically
finding/understanding cyber threats with publicly available
information, such as blog articles and CVE descriptions.
Sabottke et al. proposed the mining of tweets related to
cyber attacks as a means of designing a real-world early
warning system for identifying new exploits [28], and
Zhu et al. presented FeatureSmith that generates feature sets
for detecting Android malware via text-mining natural lan-
guage reports [40]. Liao et al. [21] and Catakoglu et al. [3]
proposed an automated system for extracting IOCs (e.g., IPs,
MD5 hashes) from unstructured text sources. Husari et al.
presented an automated, context-aware analysis system for
CTI [16]. Our work is orthogonal to the previous works, since
our system checks the inconsistency of public information
before the previous works use the information. As seen in
Section IV, there are many inconsistencies among publicly
available information. Our work could improve on the previous
works in obtaining more trustable sources.

B. Relation Extraction for Cybersecurity

There have been some works that extracted cybersecurity
relations from unstructured text [18], [19], [22]. Joshi et al.
presented an automatic framework that generates relations
between cybersecurity concepts and vulnerability descriptions
based on supervised learning [19]. McNeil et al. [22] and
Jones et al. [18] applied a bootstrapping method to derive
cybersecurity relations. While the previous works showed the
possibility of relation extraction in the cybersecurity domain,
they did not consider the relation extraction in a large-scale
environment. Generally, a data correction step, either by
manual [30] or semi-automatic methods [5], is required to
rectify the misclassified entities and relations in a large-scale
environment. Our work derived tens of thousands of relations
from 470K articles and proposed a methodology for correcting
the misclassified entities and relations.

C. Fact Checking in Information Retrieval

Finding correct information has been also studied in other
domains, specifically in information retrieval. Several recent
studies have tried to determine correct information from incon-
sistent information [36]–[38]. Yin et al. presented TruthFinder,
a general framework for fact validation, that utilizes the
relationships between websites and their information [36], and
Zhao et al. proposed a new truth-finding method designed
to address numerical data [38]. While they also focused on
the truth-finding problem, they only consider structured data
and did not include unstructured texts. Thus, those approaches
cannot be used to find inconsistencies in open web informa-
tion. Zhang et al. proposed a method for extracting trustworthy
information from unstructured data [37]. However, their focus
was on a special case of unstructured text for answering
specific questions, rather than handling general unstructured
texts. Dong et al. first presented an approach to identifying
inconsistencies in cybersecurity related information, specifi-
cally vulnerable software names and vulnerable versions [8].

Algorithm 1 The Identification of Malware Family Name
Input : Malware full name, name
Output: Malware family name, f amily

1 plat f orms ← [w32, win32, linux, android, osx, …]
2 types ← [troj, ransom, backdoor, worm, …]
3 variants ← [A-z],
4 malware ← [mirai, shylock, conficker, …]
5 tokens ← T okeni ze(name,‘.|/|−’)

6 if tokens.length = 2 then
7 if tokens[0] ∈ types then
8 f amily← tokens[1] // (T/F)
9 else if tokens[0] ∈ plat f orms then

10 f amily← tokens[1] // (P/F)
11 else if tokens[1] ∈ variants then
12 f amily← tokens[0] // (F/V)
13 else if tokens[0], tokens[1] ∈ malware then
14 f amily← tokens[0] // (F/F)
15 else if tokens.length = 3 then
16 if tokens[0] ∈ types then
17 if tokens[2] ∈ variants then
18 f amily← tokens[1] // (T/F/V)
19 else if tokens[0] ∈ plat f orms then
20 if tokens[2] ∈ variants then
21 f amily← tokens[1] // (P/F/V)
22 if f amily = ∅ then
23 f amily← name

However, they targeted only one relation-type, and dealt with
entities that were proper nouns or followed a somewhat fixed
format, and thus their approach was quite limited. Conse-
quently, the previous work could not compare the entities
composed of unstructured text, which makes it impossible
to find inconsistencies between the entities. In contrast, our
work provides an inconsistency checking system that could
handle entities composed of unstructured text by addressing
a language specific issue (i.e., similar meaning but different
words) and a malware domain specific issue (i.e., malware
aliases).

VII. CONCLUSION

Most CTI projects focus on how to extract and analyze open
source information for categorizing and labeling information,
as well as deriving inferences that extend threat intelligence
beyond the collected elements. However, far less attention has
been invested in techniques to ensure the consistency and
accuracy of the raw information extracted from the source
material. In this paper, we present a novel inconsistency
checking system, GapFinder, which is capable of analyzing the
structured relations that are extracted from a range of free-form
cybersecurity sources. Using a large set of text-mined mal-
ware reports from malware-focused sites, our work finds that
there exist a range of syntactic and semantic inconsistencies
that hinder real-world CTI production. These inconsistencies
result not just from the natural difference among groups, but
from their reporting nomenclature, level of detail, and factual
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understanding. Indeed, simply the sources chosen and the
length of the data collection can result in a different factual
understanding of a given malware. We believe that future
CTI studies will benefit significantly from systems such as
GapFinder, as it automates data reliability verification.

APPENDIX

THE ALGORITHM FOR IDENTIFICATION

OF MALWARE FAMILY NAME

Here, we describe a heuristic algorithm for identifying a
malware family name, f amily, when a malware full name,
name, is given, as shown in Algorithm 1. The algorithm first
initializes dictionary variables that are used for looking up
the malware properties (lines 1 to 4). Next, the input name
is tokenized by the delimiters ‘.’, ‘\’, and ‘-’ (line 5), which
are used to add malware properties such as target platform,
and type in malware names. Then, we derive a malware
family name from the input name based on the following
observation. AV vendors follow a somewhat unified order of
naming malware: target platform (P) is placed first, followed
by malware type (T), family name (F), and variant version
(V). And, there are some patterns in the malware full name
depending on the number of tokens. For example, when the
first token is one of the malware types, a family name is
commonly located in the second token (lines 7 to 8).
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