
Towards Building Secure and Reconfigurable
Virtual Networks on Multi-Tenant Data Centers

Jinwoo Kim
School of Software

Kwangwoon University
jinwookim@kw.ac.kr

Jaehyun Nam∗

Department of Computer Engineering
Dankook University

jaehyun.nam@dankook.ac.kr

Abstract—Network virtualization (NV) has been widely used
today in data centers to meet the multi-tenancy requirement—a
key to achieving Infrastructure as a Service (IaaS) in a modern
cloud environment. However, even though NV is a popular
solution employed by network operators, we argue that most
solutions still have challenges in terms of (i) configuration,
(ii) management, and (iii) security; all of which hinder the
deployment of secure and practical virtual networks that tenants
wish to construct. To bridge the gaps, we propose LinkWire, a
new NV system that produces secure and reconfigurable virtual
networks. For this, LinkWire leverages extended Berkeley Packet
Filter (eBPF), the recently-adopted in-kernel programmable net-
working technology. We also illustrate several use cases to show
how our system brings benefits.

Index Terms—Network Virtualization, Network Configuration,
Extended Berkeley Packet Filter

I. INTRODUCTION

The recent popularity of IaaS (Infrastructure-as-a-Service)
is the key to bringing cloud success. IaaS allows tenants to
configure their infrastructures and develop applications with-
out considering physical constraints. According to Gartner’s
report [1], the IaaS market grew by 41.4% in 2021, dominating
the other two cloud services (i.e., PaaS and SaaS) due to the
widespread use of virtualization technologies. For instance,
host-level virtualization (e.g., virtual machines, containers)
and network-level virtualization (e.g., VMware NSX) facilitate
sharing of physical resources between tenants.

Cloud tenants often utilize virtual machines (VM) as nodes
that run specific network functions, i.e., network function
virtualization (NFV). In the context of IaaS, they are used for
diverse use-cases, such as building an SDN (Software-Defined
Networking) network, a BGP VPN, or a security service chain
(e.g., IDS/IPS). Those use cases require tenants to construct
virtual networks1 over VMs (assigned to a tenant) by relying
on network virtualization (NV) techniques [2]–[4].

In order to meet the tenants’ requirements, virtual networks
must be constructed flexibly and reliably. However, we tackle
that existing NV solutions have several limitations:
Configuration Challenge. When using NV solutions, ten-
ants should manually configure a virtual link between VMs,
specifying how to en/decapsulate packets through a tunneling

* Jaehyun Nam (jaehyun.nam@dankook.ac.kr) is the corresponding author.
1We define a virtual network by a graph that consists of virtual nodes and

links, virtually built upon physical (or substrate) nodes and links.

protocol, which is not problematic in traditional data centers
where a small number of hosts reside. However, a typical
multi-tenant data center has many VMs (nodes). Creating
a virtual network (modeled as an undirected graph) with n
virtual nodes theoretically requires configuring 2n(n + 1)
virtual links at the worst. Thus, tenants have to spend much
time on manual configurations.
Management Challenge. Virtual networks should be updated
when tenants want to deploy a new network topology or the
physical topology changes. Adjusting virtual links between
nodes involves the re-installation of complicated tunneling and
segmentation rules (e.g., IP addresses and routing policies). As
VMs are normally distributed across multiple physical hosts,
tenants need to address rule conflicts that may occur between
different network subnets. It is difficult to resolve the rule
conflict problem from the current decentralized environment.
Security Challenge. It is possible that an attacker manages to
compromise a VM, aiming at performing lateral movement
within a target data center. Hence, a tenant could employ
network segmentation to prevent attackers from accessing the
tenant’s virtual network. However, while network segmenta-
tion solutions isolate traffic between different segments, they
do not do so between VMs (i.e., per virtual link). Thus,
attackers could mount network attacks within a segment, such
as eavesdropping, spoofing, and man-in-the-middle attacks.

In this paper, we propose a new NV solution, called
LinkWire, that allows tenants to build secure and reconfig-
urable virtual networks. Our key idea is to leverage eBPF
(extended Berkeley Packet Filter), an instruction set and
execution environment supported by the Linux kernel. With
eBPF, one can implement a general program executed in
low-level network stacks. By utilizing this benefit, we aim
to address the challenges mentioned above as follows: First,
LinkWire automatically produces eBPF rules according to the
tenant’s specifications for a virtual network. Following this,
our eBPF programs (installed at each VM) then en/decapsulate
packets to build a virtual link (i.e., tunnel) between VMs.
Second, LinkWire keeps monitoring the tenant’s specifications
and the physical topology changes to update their associated
rules without conflicts. Third, LinkWire achieves the inter-
VM isolation by utilizing two Linux kernel hooks: (i) XDP
(eXpress DataPath) and (ii) TC (Traffic Control). XDP is
the hook where eBPF programs can perform fast RX packet

VM VM

Hypervisor

VM VM

Hardware

VM VM

Hypervisor

VM VM

Hardware

 Virtual Network 1 Virtual Network 2

Fig. 1. Example virtual networks (i.e., network segments) built by existing
NV solutions.

processing, enabling us to implement early packet inspection
and filtering. With TC, LinkWire implements encapsulation of
TX packets for creating end-to-end tunnels (i.e., virtual links).

Our contributions are summarized as follows:
• Design of LinkWire, a new NV system that can automat-

ically create virtual networks across VMs according to a
tenant’s specification.

• Practical and secure NV methodology that utilizes in-
kernel network stacks, being able to run independently
to the underlying hypervisors.

• Demonstration of its utility with diverse deployment
scenarios, such as building an SDN network, a BGP VPN,
and a security service chain.

II. BACKGROUND AND MOTIVATION

This section presents the background and motivation to
understand the need for LinkWire.

A. Network Virtualization

In general, a hypervisor refers to software that allows to
create and run multiple virtual machines (VM) upon a physical
host. Its noticeable feature is to provide host virtualization
that emulates guest operating systems via resource sharing
for underlying hardware, achieving multi-tenant environments.
While containers are considered an alternative to VMs today,
VMs still play an important role in cloud data centers due to
their better isolation and security.

In addition, tenants often want to construct different net-
work topologies for different workload types. However, it is
important to note that existing hypervisors do not support
the creation of distinct network domains across other hosts.
To complement this drawback, several network virtualization
solutions have been proposed, such as NVGRE (Network Vir-
tualization using Generic Routing Encapsulation) and VXLAN
(Virtual eXtensible Local Area Network). The common goal
they aim to achieve is to group VMs into the same broadcast
domain (or segment) regardless of the location in a physical
network. Thus, it enables tenants to build an (isolated) layer-2
virtual network over a layer-3 network (see Figure 1). Those
solutions are widely used in modern data centers to achieve
multi-tenancy.

Unfortunately, whereas NV solutions could isolate a broad-
cast domain, we observe that they are incapable of isolating

Virtual LinkPhysical Link Tunnel Endpoint

ONOS VM

OVS OVS

ONOS VM

OVS VM

Physical Network

Virtual Network

Host Host

ONOS ONOS

OVS OVS OVS

Fig. 2. A motivating example of building an SDN (virtual) network built
upon the physical network.

end-to-end communication (i.e., virtual link) between VMs.
This is because most NV solutions rely on tunneling between
hypervisors that have tunnel endpoints2. Thus, they could
create tunnels between hosts, but could not do so between
VMs. From a topology view, it is equivalent to just having a
bus network topology of VMs; thus, tenants could not design
a virtual network topology that consists of diverse VM links.

B. Motivation

One could argue that it is possible to run VPN (Virtual
Private Network) protocols (e.g., IPSec, PP2P, L2TP) to create
an isolated virtual link (i.e., tunnel) between VMs. This
way, tunnel endpoints place on VMs instead of a hypervisor.
However, we reveal that they have several limitations in terms
of security and practicality. In what follows, we discuss the
difficulty of generating a virtual network across VMs with
those solutions by introducing a motivating scenario.

Cloud tenants often want to build an overlay SDN network
to control traffic between their VMs in a centralized manner.
In doing so, it is common to run software-based SDN switches
(e.g., OVS [5]) and a controller cluster (e.g., ONOS [6]) for
flexibility and scalability. One important issue tenants should
consider is how to construct a secure SDN control path,
which is responsible for control channels (e.g., OpenFlow)
between controllers and switches. From a security perspective,
attackers must not distinguish the control path from the data
path because they can conduct harmful attacks that target the
control channels or the controllers if they know so [7]. To
achieve this goal, it is desirable to build an isolated SDN
control path.

However, building isolated SDN control paths upon VMs
requires complicated link configurations, as shown in Figure 2.
To establish virtual links between VMs, a tenant has to perform

2Note that tunnels are established through the encapsulation of a packet with
additional headers, which are inserted and removed at the tunnel endpoints.

Tenant
Pr

ox
y

Proxy Controller

Tunneling Rule
Engine

Access Control
Rule Engine

1 2

3 4

Control Layer

Infrastructure Layer

VM VM

VM

Pr
ox

y

Hypervisor

VM VM
Pr

ox
y

Pr
ox

y
Hypervisor

VM

Pr
ox

y

VM
Pr

ox
y

Pr
ox

y

Pr
ox

y

Specification
Parser

5

Fig. 3. The overall architecture of LinkWire.

VM-by-VM configurations for tunnel endpoints. To formalize
this problem, suppose that we want to build fully connected
control paths between controllers and switches. This can be
cast to drawing a complete bipartite graph that consists of
m controller nodes and n switch nodes, having mn links.
Theoretically, a tenant has to configure 2mn tunnel endpoints
per VM, which is time-consuming and error-prone.

III. SYSTEM DESIGN

This section presents the design of LinkWire.

A. Architectural Overview

Figure 3 illustrates the overall architectural of LinkWire,
which consists of two high-level components: (i) the con-
trol layer and (ii) the infrastructure layer. The former is
responsible for orchestrating topology management jobs in a
centralized manner, while the latter is in charge of running
VMs and executing commands the control layer instructs. To
deploy LinkWire, tenants should pre-install the proxy for each
VM at the infrastructure layer to communicate with the control
layer. Because the proxy is designed to utilize the Linux
kernel’s low-level network stacks (i.e., XDP and TC), tenants
do not need to modify any service or OS running at VMs and
the underlying hypervisors. Once the proxy is installed and a
communication channel is established, the control layer adds
it to a node pool.

B. LinkWire Workflow

At the high level, LinkWire operates with the following
procedure: (1) LinkWire first takes the tenant’s topology spec-
ification as an input, and the specification parser analyzes it
to obtain information about virtual links and routing rules.
(2) They are delivered to the tunneling rule engine and the
access control rule engine, respectively. (3) The tunneling rule
engine generates configurations and rules for creating virtual

links (i.e., tunnels) between VMs. (4) Next, the access control
rule engine produces blocking/allowing rules according to the
membership of a virtual network, which will be installed in
VMs. (5) Those rules are sent to each VM via the proxy
controller that is responsible for keeping control channels with
proxies. Note that the control channels are fully encrypted by
TLS/SSL.

C. Topology Abstraction

As mentioned before, LinkWire takes a tenant’s topology
specification as an input. One challenge is how to provide an
intuitive abstraction for tenants so that they can compose a
virtual network easily. A natural solution for this is to adopt a
graph abstraction that specifies VMs by a set of vertices and
virtual links by a set of edges. To build a graph, a tenant can
choose vertices by seeing the list of currently available VMs
provided by LinkWire and drawing edges between them.

LinkWire allows a tenant to specify various constraints on
the vertex and edge labels. For example, a tenant can specify
physical constraints on a virtual network, such as the maxi-
mum number of virtual links (e.g., “VM A cannot create more
than 10 virtual links.”) and access control rules (e.g., “VM
A should not communicate with VM B.”). LinkWire allows
tenants to write all the information with graph description
languages (e.g., GraphML, DOT).

When a graph is submitted to LinkWire at an initial time,
it should be fully analyzed to extract information necessary
for the subsequent modules. For this purpose, LinkWire uses a
depth-first search (DFS) algorithm that traverses all nodes and
links. When visiting each vertex, LinkWire checks whether a
vertex or edge has a label. If so, it extracts constraints from
the label. LinkWire terminates the traversal if all vertices and
edges are covered.

LinkWire also should be able to reconfigure virtual networks
on the fly when a tenant resubmits a different specification.
An efficient solution to doing the task is to partially update
configurations currently applied to the infrastructure layer
instead of creating new ones at scratch. To do so, LinkWire
compares a newly submitted graph with the old one to find
a delta graph (i.e., a subgraph that only has newly added
links) between them. Once obtained, LinkWire performs partial
updates by only inspecting the delta graph.

D. Building Virtual Links

Here, we aim to construct inter-VM virtual links that meet
(i) security and (ii) reconfigurability: For security, the packets
interchanged between VMs must be hidden from an attacker
who may analyze packet headers. Thus, LinkWire needs to
present a way of building a secure forwarding path between
VMs, which does not reveal VM identities. However, from a
practical perspective, it is difficult for a tenant to attach an
additional spare cable in a data center for network isolation.
In addition, for reconfigurability, the virtual links should be
deployed conveniently and updated fast enough. Modifying
physical connectivity would require the tenant’s significant
time and effort.

Our approach is to leverage existing tunneling protocols
(e.g., NVGRE, VXLAN, IP in IP) to construct virtual links
compatible with the IP network stack. This way, the tenant
does not need to care about the deployment of LinkWire, and
the virtual network can be reconfigured by simply updating
tunneling rules. To eliminate the need for manual configuration
jobs, LinkWire automates the configuration process for all
eBPF programs installed at each VM. Once a tenant gives
his/her preferred tunneling protocol along with the topology
specification (that specifies IP addresses), LinkWire generates
suitable eBPF rules. The rules are updated into the maps of an
eBPF program, attached in the Linux TC hook, as the eBPF
program needs to en/decapsulate packets at TX and RX paths.

E. Inter-VM Access Control

Although LinkWire encapsulates packets, an attacker may
inject his/her packets into a (non-authorized) virtual network
by guessing its subnet. To prevent this, LinkWire generates a
whitelist from the topology specification. Thus, the eBPF rules
are updated into an eBPF program attached to the Linux XDP
hook. The XDP is the earliest hook of the RX path; thus, we
can achieve high-performance packet filtering at the lowest
network layer. At the XDP, the eBPF program reads the rule
and only allows the packet whose IP/MAC addresses belong
to the whitelist.

IV. USE CASES

This section presents the possible use-cases of LinkWire.

A. SDN Network

As shown in Section II-B, deploying an SDN network topol-
ogy requires complicated manual configurations with existing
NV solutions. In contrast, LinkWire allows a tenant to build
an SDN network easily. In the specification, the tenant defines
the control path and data path with different IP address ranges
(i.e., subnets) for building an out-of-band control channel3.
LinkWire then automatically generates distinct tunneling rules
so that the paths use different encapsulation headers.

B. BGP VPN

Many enterprise tenants employ VPN to build a private
WAN that connects geographically distributed networks. For
this purpose, they run BGP processes (e.g., Quagga [8]) and
establish BGP connections from VMs to their VPN sites
(outside data centers) [9]. When establishing BGP connec-
tions, a tenant needs to secure a BGP channel; otherwise, an
attacker can inject a malformed packet (i.e., a BGP poisoning
attack). Such threats could be avoided through LinkWire,
which performs strict access control at the XDP layer for
unauthorized access.

3Note that the out-of-band control channel means that the SDN control path
is (physically or virtually) isolated from the data path.

C. Security Service Chain

NFV is widely employed in data centers due to its cost
efficiency and flexibility. With NFV, tenants could deploy
any (software-based) network function on the VM they want
to run, which is cheaper and more elastic than proprietary
hardware. Typically, a tenant runs network functions on a few
VMs (i.e., network choke points) for resource saving. As net-
work traffic may not go through those VMs, the tenant needs
to determine a service chain of traffic, specifying a packet
processing sequence between VMs. Whereas composing the
service chain is a complicated task in existing NV solutions,
LinkWire facilitates the daunting job by automatically produc-
ing routing rules.

V. CONCLUSION

In this paper, we present LinkWire, a new NV system for
secure and reconfigurable virtual networks built on multi-
tenant data centers. We sketch the concept of LinkWire, system
design, and its potential use cases. In future work, we will
implement LinkWire and evaluate its security and performance
by comparing it to existing NV solutions.

ACKNOWLEDGMENT

This research was supported by the MSIT (Ministry of
Science and ICT), under the National Program for Excellence
in SW (2017-0-00096), supervised by the IITP (Institute
for Information & Communications Technology Planning &
Evaluation).

REFERENCES

[1] “Gartner forecasts worldwide public cloud end-user
spending to reach nearly $500 billion in 2022,” 2022,
https://www.gartner.com/en/newsroom/press-releases/2022-04-19-
gartner-forecasts-worldwide-public-cloud-end-user-spending-to-reach-
nearly-500-billion-in-2022.

[2] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, N. Mckeown, and
G. Parulkar, “Can the production network be the testbed?” in 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 10),
2010.

[3] H. Wang, A. Srivastava, L. Xu, S. Hong, and G. Gu, “Bring your
own controller: Enabling tenant-defined sdn apps in iaas clouds,” in
IEEE INFOCOM 2017-IEEE Conference on Computer Communications.
IEEE, 2017, pp. 1–9.

[4] G. Yang, B.-Y. Yu, S.-M. Kim, and C. Yoo, “Litevisor: A network hyper-
visor to support flow aggregation and seamless network reconfiguration
for vm migration in virtualized software-defined networks,” IEEE Access,
vol. 6, pp. 65 945–65 959, 2018.

[5] B. Pfaff, J. Pettit, T. Koponen, E. Jackson, A. Zhou, J. Rajahalme,
J. Gross, A. Wang, J. Stringer, P. Shelar et al., “The design and imple-
mentation of open vswitch,” in 12th USENIX symposium on networked
systems design and implementation (NSDI 15), 2015, pp. 117–130.

[6] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “Onos: towards
an open, distributed sdn os,” in Proceedings of the third workshop on Hot
topics in software defined networking, 2014, pp. 1–6.

[7] J. Cao, Q. Li, R. Xie, K. Sun, G. Gu, M. Xu, and Y. Yang, “The crosspath
attack: Disrupting the sdn control channel via shared links,” in 28th
USENIX Security Symposium (USENIX Security 19), 2019, pp. 19–36.

[8] “Quagga software routing suite,” 2022, https://www.quagga.net/.
[9] “Bgp vpn interconnection service overview,” 2022,

https://docs.openstack.org/networking-bgpvpn/ocata/overview.html.

