
Poster: Towards a Secure and Practical System to Obfuscate Tor Network Traffic

Minjae Seo†∗, Myoungsung You†∗, Taejune Park‡, Seungwon Shin†, and Jinwoo Kim§∗∗
†KAIST, ‡Chonnam National University, §Kwangwoon University

Abstract—Tor (The Onion Routing) has emerged as a promis-
ing open-source privacy network for providing anonymous
communication in sensitive tasks, such as journalism and
activism. However, it is also susceptible to deanonymization
attacks, particularly flow correlation attacks, which iden-
tify users by correlating unique traffic flow characteristics
observed at the ingress and egress segments of a Tor con-
nection. To mitigate these attacks, various traffic obfuscation
techniques have been developed; however, they often suffer
from bandwidth waste and CPU resource exhaustion, critical
issues in the Tor ecosystem where efficient utilization of the
limited, voluntarily-shared bandwidth and resource of nodes
is crucial. In this paper, we propose ODIN, a Tor-tailored
hardware-based security solution that hinders adversaries
from launching flow correlation attacks. Unlike previous
approaches that primarily added randomly crafted padding
bytes to packets, ODIN innovatively minimizes bandwidth
waste by slicing and reorganizing packets destined for the
same server with the aid of the context of Tor circuits,
effectively addressing the issue of wasted network resources.

1. Introduction

Tor (The Onion Routing) is an open-source privacy
network that enables Internet users, particularly those in
contexts with active censorship such as journalists, ac-
tivists, or whistle-blowers, to access anonymous online
services. The Tor network is widely used, with over 3
million daily users and a total of 6,000 volunteer relay
nodes transmitting terabytes of traffic every day.

As the nature of Tor aims to facilitate anonymous
communication for sensitive tasks, Tor is naturally a target
for many deanonymization attacks. Among them, the flow
correlation attack [8] is obviously the most powerful at-
tack correlating unique characteristics of traffic flows (e.g.,
packet sizes, interval times) observed from the ingress
and egress segments in a Tor connection. The pioneering
research shows that it is effective for deanonymizing Tor
clients and servers. For example, RAPTOR [10] achieved
a 90% accuracy in deanonymizing user identity. Also, the
state-of-the-art flow correlation of DeepCorr [9] offered
a correlation accuracy of 96% even with shorter flow
observations than previous methods required.

In recognition of the threat posed by flow correlation
attacks, several traffic obfuscation techniques [3], [4], [6]
have been developed to mitigate them. However, these
techniques are not well suited to the requirements of the
Tor network due to the following issues:
CPU Resource Exhaustion. Existing secret Tor relay
nodes (e.g., bridge nodes [4]) or pluggable transports

∗Co-first authors, ∗∗Corresponding author

(e.g., obfs4, meek [6]) are utilized to conceal the fact that
clients are using the Tor network by randomizing packet
bytes or disguising a Tor connection as other legitimate
connections (e.g., Skype). However, these techniques rely
on software-based systems to process individual packets,
which significantly consumes CPU resources compared to
using ordinary Tor relay nodes. Among them, it is partic-
ularly crucial for exit nodes to ensure efficient resource
utilization, as they play a vital role in maintaining unin-
terrupted routing and communication in the Tor network.
Tor Bandwidth Waste. Other techniques [5], [7] add
crafted padding bytes to the original packets and control
packet transmission timing to obfuscate the size and in-
terval time of individual packets. However, the inclusion
of padding bytes in these methods imposes additional
burdens on individual packets and can waste Tor network
bandwidth, particularly in situations where a limited num-
ber of volunteer nodes are shared by many Tor clients. As
a result, most existing obfuscation methods are not well
adapted to be used practically in the real Tor network.

In this paper, we propose ODIN, a hardware-based
security solution that addresses both issues raised by
existing solutions. To conserve CPU resources, ODIN of-
floads all Tor traffic obfuscation logic to a programmable
hardware network interface card (i.e., SmartNIC). Also,
ODIN addresses the issue of bandwidth waste by slicing
and reorganizing packets destined for the same server with
the aid of the context of Tor circuits. This approach allows
ODIN to obfuscate the original traffic pattern by assem-
bling two distinct flows, significantly saving bandwidth
and CPU resources compared to existing solutions.

We implement a full prototype of ODIN using the
NVIDIA BlueField 2® SmartNIC [2] and conduct exten-
sive experiments within a realistic Tor testbed environ-
ment. In our private testbed, we establish a trusted exit
node, ODIN, responsible for transmitting Tor traffic to the
server. Additionally, we implement a receiver program,
utilizing recent kernel networking features, designed to
operate on the destination server. The receiver program
ensures that Tor services maintain transparency when de-
ploying ODIN by restoring the combined packets received
from ODIN. In our evaluation, we primarily demonstrate
the effectiveness of obfuscation and performance improve-
ments by presenting different aspects of traffic flow after
the deployment of ODIN.

2. Technical Background and Preliminaries

2.1. Tor Circuit
Tor works by leveraging a core technology known as

onion routing. Onion routing transmits encrypted data (in
multiple layers of encryption) to the final destination (i.e.,



server) through a minimum of three types of relay nodes
in the Tor network.

Entry node, also known as the guard node, serves
as the initial ingress point in the Tor network, receiving
connections directly from Tor clients. Its main role is to
receive multi-layer encrypted traffic from clients, decrypt
the outermost layer, and forward the partially decrypted
traffic to the next node in the Tor network. It is worthy
note that while the entry node has access to the client’s
identity (e.g., IP address) and can detect the client’s uti-
lization of Tor, it is unable to decrypt the final destination
or the content of the client’s traffic due to the multi-layer
encryption mechanisms inherent in onion routing.

Middle node is the second node to which the Tor
client connects and acts as a linking chain. It serves a
crucial role by stripping the second layer of encryption and
seamlessly routing Tor traffic between the entry and exit
nodes. Crucially, due to the principles of onion routing,
this middle node is unable to discern the identities or
information of either the client or the server.

Exit node is the last egress point where Tor traffic
finally hits the public Internet. It communicates directly
with the server, which is the final destination, making
it capable of identifying the server’s true identity and
decrypting the encrypted layers of Tor traffic. As a re-
sult, the exit node becomes a desirable target for several
entities (e.g., law enforcement agencies and threat actors)
to intercept Tor traffic in the middle.

Given its significance, note that several reputable or-
ganizations and privacy-conscious entities already operate
trusted exit nodes [1] with enhanced security features
and capabilities. These trusted exit nodes are specifically
designed to protect both the Tor network and service
operators from potential hazards and threats associated
with exit nodes, thereby enhancing the overall security
and integrity of the Tor ecosystem.

2.2. Flow Correlation Attack
In most scenarios of a flow correlation attack, adver-

saries attempt to link Tor traffic observed from the two
points, ingress and egress. The two points, carrying the
information of the real identity (e.g., client or server), can
be an attractive target in order for adversaries to eavesdrop
on Tor traffic in the middle. If adversaries collect enough
traffic from both points, they can have the capability
of performing a flow correlation attack with following
pioneering traffic analyses tailored to Tor network.
Statistical Metric. Several studies have used a statis-
tical metric to measure the flow similarity of traversed
flows observed from both ingress and egress points. For
example, Sun et al. [10] used the Spearman correlation
coefficient, which centers on a nonparametric measure
that can evaluate the statistical dependence between the
rankings of two given variables. They extracted the TCP
sequence and acknowledgement number from each packet
trace to conduct asymmetric correlation analysis that al-
lows adversaries to observe any direction of the Tor traffic
at both points (ingress and egress points). However, one
obvious problem arises from the fact that they consider
the case where there is a long-lasting Tor connection
(inevitably needs a long flow observation) rather than
aims to consider an intermittent Tor connection which is
pervasive in the real world Tor network.

Obfuscated

Size

Time

Flow pattern

Tx Ty Tz

Size

Time

Adversary

Tz

P1 P2

ODIN

CID/SID Sync
Module

Packet Processor
Module

Exception Handler 
Random Data

P1,1

P2,1

Tor Exit

Tor Network

P1 P2

SmartNIC

P2,1

P1,1

V

P1
P2

V
Encrypted

queue1

queue2
(CID/SID) Queue

P1 P2V

Pattern

Figure 1: ODIN combines packets destined for the same
server, thereby rendering the pattern of Tor traffic indis-
cernible to adversaries.

Deep Learning. To address the issue derived from the sta-
tistical metric, a new approach has emerged to measure the
flow similarity even when considering a short-lived nature
of Tor network. For example, Nasr et al. [9] proposed
the state-of-the-art deep learning-based flow correlation
technique, DeepCorr [9], that is able to correlate Tor traffic
with high accuracy using very short-term observations of
Tor connections. Due to the content encryption for each
packet, they leveraged an advanced deep learning model in
order to learn hidden patterns of flow-level features in Tor
traffic. Specifically, they found dominant characteristic in
the feature of packet sizes and timings when correlating
Tor traffic. Through extensive experiments, they showed
the dangers posed by exposure of flow-level features to
adversaries. Thus, it is necessary to hinder adversaries
from learning unique patterns through these features.

3. ODIN Overview
3.1. Threat Model

The goal of adversaries is to deanonymize clients by
correlating ingress flows and egress flows. They compare
several unique characteristics of Tor traffic (e.g., packet
sizes and timings) instead of attempting to decrypt the
content of Tor traffic. To achieve their goal, we consider
adversaries who have capabilities to eavesdrop on Tor
traffic (especially ingress and egress flows) passively.

We believe this scenario is practical in the real world.
In recent years, many threat actors are running hundreds of
malicious Tor nodes in order to intercept Tor traffic [11].
Adversaries can further leverage BGP hijacking attacks,
which becomes increasingly frequent, by a means to
redirect the Tor traffic to themselves [10]. There might
also be more powerful adversaries, such as governmental
agencies, who can perform wiretapping attacks directly
on multiple Internet ASes or intercontinental fiber optics.
We contemplate the deployment of ODIN on a trusted exit
node, managed securely by reputable entities, mitigating
the risk of adversary compromise.

3.2. System Design
As shown in Figure 1, the design of ODIN is primarily

aimed at achieving a secure and practical obfuscation
system that addresses the following three key aspects:
Context-aware Obfuscation. In order to develop a Tor-
tailored obfuscation system, ODIN ensures consistency
by leveraging the context information of established Tor
circuits. As shown in Figure 1, the CID/SID Sync module
within ODIN perpetually synchronizes with the circuit
identifier (CID) and stream identifier (SID) information



derived from the Tor application through its default API.
The CID provides specificity about the Tor circuit that a
connection refers to, whereas the SID identifies distinct
TCP flows. Utilizing both CID and SID, ODIN combines
distinct flows that are destined for the same server.
Bandwidth-saving Obfuscation. In an environment
where a limited number of Tor nodes share their band-
width, ODIN reduces bandwidth waste effectively. Thus,
the packet processor module in ODIN minimizes Tor
bandwidth by piggybacking on packets already destined
for the same final server. As shown in Figure 1, the packet
processor module removes the headers (e.g., Ethernet) of
two paired packets, and subsequently, it combines the
remaining contents of both packets with a virtual header.
The total size of an n-th obfuscated packet P ′

n is defined
as P ′

n = V + Pr,n + Pr+1,n, where Pr,n denotes the size
of n-th packet in the r-th queue and V denotes the size
of the virtual header. This approach effectively obfuscates
the traffic pattern by combining two distinct flows into
a single flow. After combining, the resulting packets are
encapsulated, encrypted, and sent to the destination server.

Upon arrival at the receiving server, the combined
packets are first decrypted. Subsequently, utilizing the
data embedded within the decrypted virtual header, the
receiver program reassembles them back into their original
form. This reconstitution of packets is performed prior to
the initiation of kernel network stack operations, thereby
guaranteeing that the Tor service on the destination server
receives the packets irrespective of the obfuscation pro-
cess conducted by ODIN. The overall bandwidth waste
is significantly reduced compared to existing padding-
based methods, making ODIN a practical solution in en-
vironments where efficient utilization of limited shared
bandwidth is essential.
Spatial and Temporal Obfuscation. ODIN operates with
obfuscation functionalities for both size and timing under
all circumstances. To this end, we consider two scenarios:
(i) when only a single packet is in the queue or remains
after pairs of packets have been processed within the time
threshold; and (ii) when the combined size of two packets
exceeds the MTU size.

To address these scenarios, the packet processor mod-
ule stores the sizes of previously transmitted packets. Uti-
lizing this information, it calculates the optimal padding
size for the remaining packet as follows:

padding ← CREATERANDOMDATA(MTU − Pr,n)
padingSize← GETSIMILARSIZE(L,Pr,n, padding)

, where MTU is the maximum transmission unit, Pr,n

is the size of an n-th packet in the r-th queue, and L is
the size list of previously transmitted packets. Then, the
packet processor module identifies a size that is most sim-
ilar to those within the list of previously transmitted pack-
ets. This selected size is then used to create a packet that is
sent to the server, thereby preventing potential adversaries
from discerning any unique packet characteristics. This
approach guarantees size and timing obfuscation under
all conditions while preserving the system’s effectiveness.

4. Evaluation
We conduct a preliminary experiment on our private

Tor testbed, comprising three Tor container nodes (i.e.,
entry, middle, and exit) running on two physical machines

0 10 20 30 40 50 60 70
Time (seconds)

500

1000

1500

2000

2500

3000

Pa
ck

et
 S

iz
e 

(b
yt

es
) Flow 1 Flow 2 Obfus.

Figure 2: Traffic pattern be-
fore/after deploying ODIN.

0 50 100 150 200 250
Time (seconds)

26
28
30
32
34
36
38
40
42

CP
U

 U
sa

ge
 (

%
)

ODIN obfs4

Figure 3: CPU usage of
ODIN and obfs4.

with several services (e.g., video streaming and file down-
loading). The evaluation of ODIN primarily centers on two
key aspects: (i) its efficacy in obfuscating Tor traffic and
(ii) its ability to impose lower overhead compared to an
existing obfuscation solution.

Figure 2 exhibits distinct flow patterns with and with-
out ODIN’s obfuscation functionality. ODIN successfully
combines two distinct traffic flows, resulting in discernible
deviations from the original traffic flow patterns. Figure3
presents the measured CPU usage within a specific time
window, comparing the deployment of ODIN and obfs4
for obfuscation purposes. On average, ODIN exhibits a
5% reduction in CPU overhead compared to obfs4.

5. Future Work
In future work, we will assess the resilience of ODIN-

obfuscated traffic against advanced flow correlation at-
tacks, including those using deep learning techniques.

Acknowledgment
This work was supported by the National Research Foun-

dation of Korea (NRF) grant funded by the Korea government.
(MSIT) (No. RS-2022-00166401, 2022R1C1C1006967)

References
[1] Tor Exit Enclave. https://help.duckduckgo.com/

duckduckgo-help-pages/privacy/tor-exit-enclave/, 2022.
[2] NVIDIA BLUEFIELD-2 DPU, 2023. https://resources.

nvidia.com/en-us-accelerated-networking-resource-library/
bluefield-2-dpu-datasheet.

[3] Tor Circumvention, 2023. https://tb-manual.torproject.org/
circumvention/.

[4] Types of Relays on the Tor Network, 2023. https://community.
torproject.org/relay/types-of-relays/.

[5] Kevin P Dyer et al. Peek-a-boo, I Still See You: Why Efficient
Traffic Analysis Countermeasures Fail. In IEEE Symposium on
Security and Privacy. IEEE, 2012.

[6] David Fifield et al. Blocking-resistant Communication Through
Domain Fronting. Proc. Priv. Enhancing Technol., 2015(2):46–64,
2015.

[7] Roland Meier et al. ditto: WAN Traffic Obfuscation at Line Rate.
In NDSS Symposium, 2022.

[8] Steven J Murdoch and George Danezis. Low-cost Traffic Analysis
of Tor. In IEEE Symposium on Security and Privacy, 2005.

[9] Milad Nasr et al. DeepCorr: Strong Flow Correlation Attacks
on Tor Using Deep Learning. In ACM SIGSAC Conference on
Computer and Communications Security, 2018.

[10] Yixin Sun et al. RAPTOR: Routing Attacks on Privacy in Tor. In
24th USENIX Security Symposium, 2015.

[11] Matthew K Wright et al. An Analysis of the Degradation of
Anonymous Protocols. In NDSS Symposium, 2002.

https://help.duckduckgo.com/duckduckgo-help-pages/privacy/tor-exit-enclave/
https://help.duckduckgo.com/duckduckgo-help-pages/privacy/tor-exit-enclave/
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/bluefield-2-dpu-datasheet
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/bluefield-2-dpu-datasheet
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/bluefield-2-dpu-datasheet
https://tb-manual.torproject.org/circumvention/
https://tb-manual.torproject.org/circumvention/
https://community.torproject.org/relay/types-of-relays/
https://community.torproject.org/relay/types-of-relays/

	Introduction
	Technical Background and Preliminaries
	Tor Circuit
	Flow Correlation Attack

	ODIN Overview
	Threat Model
	System Design

	Evaluation
	Future Work
	References

