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Abstract—Over the years, Software-Defined Networking (SDN)
has grown aggressively, and many SDN controller products have
been released to date as not only open source projects but also
commercial ones. Considering the adoption of SDN, the security
of SDN components is an essential aspect that needs to be
thoroughly investigated, so research in this area has been getting
attention. However, despite growing interest in SDN security, SDN
controllers are vulnerable to security vulnerabilities that have not
yet been disclosed. Among them, we focus on RESTful services
provided by SDN controllers because those services help users
to implement useful network functions in a programmable way,
so it can be a critical attack point to an adversary. Therefore,
in this work, we try to find out vulnerabilities and bugs of the
RESTful service implementation, which are powerful enough to
jeopardize the entire network. To more efficiently detect those
vulnerabilities and bugs, we introduce a framework called RE-
CHECKER that can find the security holes of RESTful services
in SDN controller. As a result, using RE-CHECKER, we found
four bug types against three open source controllers: ONOS,
Floodlight, and Ryu. To prove the feasibility and examine the
potential impact of each vulnerability and bug, we demonstrate
some vulnerable scenarios in the real SDN environments.

Index Terms—SDN, Software-Defined Networking, REST
APIs, SDN Security, RESTful services

I. INTRODUCTION

In a traditional network, a network device consists of a
control plane, which determines how to control network flows,
and a data plane, which serves to forward or drop network
packets by the policy of the control plane. However, since
they are tightly coupled with each other, it is very difficult
to add new functionalities to the devices. Thus, to overcome
the shortcomings, Software-Defined Networking has been pro-
posed and its key idea is the separation and centralization
of the control plane to an SDN controller. These separated
control plane and the data plane communicate with each other
using an SDN protocol called OpenFlow [1]. With its sepa-
ration and centralization, the SDN controller provides useful
network services through northbound interfaces and exposes
open APIs that allow developers to implement innovative SDN
applications. For that reasons, it is far easier to flexibly and
dynamically manage the entire networks in SDN than the
traditional networks.

In addition, in order to allow an easy access to the network
functionalities, today’s SDN controllers provide RESTful ser-
vices as an external web service. So, network administrators
can employ the core services and various network function-
alities in the SDN controller by calling REST APIs (i.e.,
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HTTP protocol) instead of programming complex logic in the
controller. Technically, the complicated and time-consuming
programming task is simplified to CRUD operations of HTTP
methods (i.e., GET, POST, etc.), so the administrators can
easily query and manipulate network states. Inspired by these
benefits, most popular SDN controllers provide the administra-
tors with RESTful services to facilitate network management
in a flexible way [2], [3].

Meanwhile, since the SDN controller is a key component
that has powerful capabilities over the entire network infras-
tructure, there have been many concerns about a security as-
pect [4], [5]. In particular, the efforts to design a secure control
layer within the controller have been proposed [6], [7]. One of
the problems come from that uncontrolled SDN applications
can call core services through the northbound interface without
any constraints, therefore, the invocation of the applications
can manipulate network states and even kill the controller
itself. With these motivations, an SDN-specific penetration tool
has also been presented [8], in order to investigate all possible
scenarios that misuse the northbound interfaces. However, to
the best of our knowledge, no one systemically explored the
vulnerability of the RESTful services, despite the fact that the
services can be easily exposed to an external adversary.

This paper introduces a security assessment framework for
the RESTful services in SDN, called RE-CHECKER, which
can automatically find out security holes related to the REST-
ful services in the SDN controller. Using RE-CHECKER, we
specifically attempt to reveal the design flaws in the SDN
controller, which are potentially powerful enough to put the
entire network at risk. To prove the feasibility and examine
the potential impact of each RESTful service vulnerability, we
demonstrate some vulnerable scenarios in SDN. In addition,
with the help of RE-CHECKER, we disclosed some security
vulnerabilities or bugs in the implementation of RESTful ser-
vices in three different SDN controllers: ONOS [9], Floodlight
[10], and Ryu [11].

Roadmap. The remainder of this paper is structured as
follows. In Section II, we present the motivation with a
simple example and related works. In Section III, we introduce
several considerations for finding vulnerabilities and present
the overall design and implementation of RE-CHECKER.
Then, we show some use cases of the bugs we found in Section
IV. Finally, we discuss future works and conclude our paper
in Section V.
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II. MOTIVATION AND RELATED WORK
A. Motivation
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Fig. 1: A REST API misuse scenario that a network adminis-
trator misunderstands the actions parameter of installing a
flow rule

Figure 1 shows a motivating example of how a simple typo
made by a network administrator can affect network flows
in SDN environments. In this motivating example, there is a
simple network topology that consists of a Floodlight SDN
controller and two OpenFlow switches. And, assuming that
the administrator installs a flow rule on the switch by using
a RESTful service provided by the forwarding application
running on the controller so that Host A can communicate with
Host B, he should build a syntax-appropriate REST message
and then send it to the controller through the HTTP protocol.

The process of installing the flow rule on the switch through
the RESTful service is as follows. First, the administrator
makes a REST message that is composed of some resources
(URI, method, etc.) in the HTTP header and the flow rule
information in the data field according to the format required
by the SDN controller. Next, after he sends the message
to the RESTful service, the service verifies if the message
corresponds with its specification. If the REST message is
legal, the controller creates a FLOW_MOD message' and then
sends it to the switch. After that, the RESTful service returns
a message with the status code 200 (success). Otherwise, the
service returns an error code 404 without installing the flow
rule (fail).

In Figure 1, the network administrator makes the REST
message with an act ion parameter and sends it to the REST-
ful service of the forwarding application (1). However, the
action parameter is undefined in the Floodlight specification
[3]. In fact, he should have made the message with actions
parameter (not action) according to the specification. The
problem here is that the Floodlight controller does not verify
the undefined parameter, and instead sends a flow rule with an
empty value of actions parameter to the switch (2), so the drop
flow rule is installed on the switch (3). This is not intended one

U1t is one of the OpenFlow message types [1] and used to manage flow
rules on the OpenFlow switches

by the administrator, and more seriously, the controller returns
a result message indicating that the requested flow rule was
successfully installed (i.e., code 200), so the administrator
believes that the requested flow rule (i.e., the forwarding rule)
was properly installed. However, the actually installed flow
rule is the drop flow rule and it disrupts the communication
between the two hosts by dropping all the packets from Host
A.

B. Related Work

As the attention to SDN has been growing, there have
been some studies on the security of SDN. Hong et al. found
security holes pertaining to the topology fabrication attacks
in SDN and provided the defense mechanism [12]. Lee et
al. proposed a penetration testing framework for the overall
components in SDN [8]. BEADS, on the other hand, developed
a framework that automatically generates various test scenarios
specific to OpenFlow messages for SDN [13]. However, these
studies do not consider the RESTful services on the SDN
controller.

In the case of the security issues related to RESTful
services in SDN controllers, Xiao et al. found various XSS
vulnerabilities in web services provided by not only open
source controllers (ONOS and Floodlight) but also commercial
controllers (HPE VAN, etc.) [14]. CONGUARD showed a new
attack that leverages harmful race conditions in the Floodlight
and OpenDaylight by using REST APIs [15]. However, while
they found the vulnerabilities and attacks in an ad-hoc manner,
we suggest a framework that can automatically discover the
security holes of the RESTful services in the SDN controller.

III. RE-CHECKER

In this section, we present the design of RE-CHECKER to
effectively find out the security vulnerabilities or implemen-
tation bugs in the RESTful services. Thus, we first describe
the design considerations and the major components of RE-
CHECKER, and then, we briefly explain the implementation.

A. Design Considerations

We assume that two misuse scenarios are possible: (1) a
network administrator misconfigures the RESTful services by
accident as shown in Section II, and (2) an external adversary
may access the RESTful services and tries to exploit them by
injecting malicious inputs. Since one of the common causes of
numerous network problems is the misconfiguration by human
factors [16], it is possible that the administrator may send an
abnormal message (e.g., erroneous syntax or range of valid
input) to the SDN controller. Also, the RESTful services can
be exploited by an attacker, given that the services typically
are launched on 8181 or 8080 ports in most SDN controllers.
We observed that ONOS uses basic access authentication
[17] when receiving the inputs, while Floodlight and Ryu
do not. But here, we argue that a lot of network systems
surprisingly employ default username/password [18], so the
ONOS’s authentication can also be broken.
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Fig. 2: The overall design of RE-CHECKER

To more efficiently find these security issues of misusing
the REST APIs, we describe several design considerations as
follows. First, (i) it should be aimed at the critical RESTful
services. For example, most SDN controllers provide the
RESTHful services for managing the flow rules on the switches
(e.g., Floodlight), or for configuring SDN applications as well
(e.g., ONOS). Among them, we selected the RESTful services
related to flow rule as a target RESTful service, which is a
significant network function in SDN. Next, (ii) it should be
highly automated to efficiently make REST messages. Since
manually making and sending all the malformed messages is
an impractical and time-consuming job, we adopt a black-box
fuzzing technique. By automatically putting arbitrary values in
JSON format into various fields (parameter, value and JSON
format), we can efficiently and randomly create malformed
REST messages, which may lead the SDN controllers to
unexpected behavior such as controller crash or installing
undesired flow rule.

Unexpected behavior: Since analyzing all the result in-
formation after each test is inefficient, we need to define
the unexpected behavior, which can detect the test case as
an abnormal one. In general, after requesting the RESTful
services, we can see whether the REST message is processed
properly by looking at its response message. For example,
when an abnormal REST message containing an out-of-range
value is sent to the SDN controller, the flow rule can be
installed due to the problem of the controller and a 200
status code can be returned in the response message. Thus, we
first make a malformed request and get a response message.
If the response message has 200 status code, we determine
the requested flow rule as suspicious, check whether the flow
rule is installed, and then compare the installed flow rule
with the requested flow rule. Finally, if the comparison result
shows that the two rules are different, it is determined to be
unexpected behavior. Additionally, we periodically check the
state of the SDN controller and switches to discover if there are
any critical problems that fall into the unexpected state, such
as the controller crash or switch-performance degradation.

POST /wm/staticflowpusher/json HTTP/1.1
Host: localhost:8080
Accept: application/json

{
"switch": "00:00:00:00:
00:00:00:01",
"name" : "flow_mod_1",
"cookie": 0,
"priority": 32768,
"in_port": 1,
"eth_type": "0x0806"
"active": "true",
"actions": "set_field=arp_tpa
->10.0.0.2,
output=2"
}
(A) Parameter (B) Value
(C) Format

Fig. 3: The REST message example of installing a flow rule
in Floodlight controller

B. RE-CHECKER Components

RE-CHECKER consists of five main components; controller
interface, rule preprocessor, rule generator, anomaly detector,
and log manager as shown in Figure 2.

Controller Interface: The controller interface is used to
communicate with a target SDN controller. Since the RESTful
services are provided via HTTP protocol, the interface sends
various HTTP requests to the target for installing flow rules
and getting information about flow rules from the switches.

Rule Preprocessor: The rule preprocessor receives a seed
file from a network administrator and preprocesses it so that
the file can be parsed by the rule generator. The seed file has
a default HTTP header and payload based on a JSON format
consisting of parameter and value, as shown in Figure
3. When starting RE-CHECKER, the administrator can also
determine which parts should be randomized among them.

Rule Generator: This component creates a number of mal-
formed REST messages by putting arbitrary values in multiple
fields based on the preprocessed rule. In the case of the
parameter and value field, the generator sets all possible values
(e.g., boolean, string, integer, etc.) in each field. Regarding the
format part, it randomly writes an arbitrary string that destroys
the syntax of the format.

Anomaly Detector: The anomaly detector verifies whether
the SDN controller properly handles the REST messages
created by the rule generator. It determines the unexpected
behavior by using RESTful services to get and compare
information for a particular network element. For example,
the anomaly detector uses a REST message “GET /flows/” to
query the flow rule information from ONOS’s database and
then compares it with the requested flow rule, which is gen-
erated in the previous step. If the two flow rules are different
from each other, it is determined as the unexpected behavior.
Also, the anomaly detector can detect the controller crash or
the switch performance degradation by communicating with
the controller and switch.
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Log Manager: The log manager leaves all the issues from
each component in a log file. For example, if the anomaly
detector discovers the unexpected behavior, the log manager
writes both the requested flow rule and installed one on the
actual switch to the log file. The network administrator can
later check the log file to see which messages are causing the
problem.

C. Implementation

We implemented RE-CHECKER in approximately 450 lines
of Python codes and leveraged pyjfuzz [19], an open source
JSON fuzzer to generate malformed JSON inputs.

IV. EVALUATION

This section provides an evaluation of the REST API
implementation in each target SDN controller. We tested
ONOS, Floodlight, and Ryu controllers, which are popular
open source SDN controllers nowadays. The ONOS version
is 1.14.0, the Floodlight version is 1.2, and the Ryu version is
4.26 respectively. First, we categorize security vulnerabilities
and bugs that we have found into four types, and then we
introduce the use case of each type.

TABLE I: The test results of each bug for the RESTful service
that installs a flow rule provided by each controller: ONOS,
Floodlight, and Ryu

ONOS | Floodlight | Ryu
Arithmetic Overflow and Underflow (0] (0] X
Invalid Value Type (0] (0] X
Unchecked Prerequisite (0] (0] X
Undefined Parameters (0] (0] (0]

A. Bug type categorization

Arithmetic Overflow and Underflow: This case is an
overflow and underflow bug for the numeric types. By de-
fault, the type and range of each parameter in the flow rule
are defined in OpenFlow specification [1]. Therefore, if one
parameter needs to get a numeric value, the SDN controller
should verify if the parameter receives an out-of-range value.
For example, according to the OpenFlow specification, the
priority should have the numeric value, and its range is
from 0 to 65535. However, if a network administrator may
put a very large number (e.g., 65536) into the priority and the
controller does not check the range of it, the priority can be
0 due to the overflow.

Invalid Value Type: Similar to the previous case, if an
SDN controller receives an invalid value type for a particular
parameter, the controller should handle the exception appropri-
ately. For example, isPermanent parameter is the boolean
type supported in the ONOS controller. If it is set to true, an
installed flow rule should remain permanently. However, if the
controller receives a string value “True” for that parameter, it
is encoded into a boolean value false incorrectly, so the non-
permanent flow rule is sent to the switch.

Unchecked Prerequisite: The OpenFlow specification also
describes various prerequisites for each parameter. For exam-
ple, if a network administrator wants to install a flow rule for

{"switch":"00:00:00:00:00:00:00:01",

active : . ‘
"1n_por:":1, PrOJeCt m
"set_eth_src":"00:00:00:00:00:01", i
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"actions":"output=2"} E
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Cookie Table] Priority | Match Apply Actions N ﬁ

45035999442786795 0x0 0

in_port=1  actions:output=2 OP.en Flow Switch

Installed Flow Rule

Fig. 4: Arithmetic Overflow in Floodlight

IP packets, he should specify that the Ethernet type of the
flow rule is IPv4, and otherwise, an SDN controller should
return an error. In another example, in order to use group
parameter supported from OpenFlow 1.3, the corresponding
group should exist in a switch’s group table.

Undefined Parameters: If a network administrator builds a
REST message with undefined parameters and sends it to the
SDN controller, the controller should return an error message
with the proper reason. However, as a result of RE-CHECKER
testing the controllers, none of ONOS, Floodlight, and Ryu
provide any exception handling for the undefined parameters.

Table I shows the test result whether each controller has the
implementation bugs of the RESTful service related to the flow
rule against each bug category. In the case of the ONOS and
Floodlight controllers, they have the bugs for all the types.
However, in the case of the Ryu controller, only undefined
parameter bug was found because unlike the ONOS and
Floodlight controller, Ryu controller is a lightweight python-
based that does not store the state of the flow rule information.
On the other hand, since the ONOS controller manages the
internal database by periodically checking the switches in
order to provide data consistency and fault-tolerant services,
it can cause a little more serious internal problems discussed
in Section IV-B2.

B. Use cases

1) Arithmetic Overflow and Underflow: It is an effective
bug in ONOS and Floodlight controller, and we show a use
case targeting Floodlight controller, which is caused by not
checking an out-of-range value of priority parameter. As
mentioned before, the priority value has to be set from 0
to 65535 because it is an unsigned short type. Therefore,
if the input is out-of-range value, an error message should
be returned by the controller. However, when the network
administrator fills the priority with an out-of-range value to
install a high priority flow rule as shown in Figure 4, the
installed flow rule has the minimum priority (i.e., 0). The
reason is that the controller does not check the range and
arithmetic overflow occurs in the priority field. Therefore,
since the flow rule has the lowest priority, some matched
packets may be delivered to the undesired port number on
the switch.
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Fig. 5: Unchecked Prerequisite in ONOS

2) Unchecked Prerequisite: 1t is a possible bug in ONOS
and Floodlight controllers, and here we show a bug scenario
targeting ONOS controller, which results from not checking
the prerequisites related to group. When installing a flow
rule, since each OpenFlow version has different supported
features, a network administrator should consider which Open-
Flow version is used between an SDN controller and switches.
However, assuming that the administrator misunderstands that
the OpenFlow version is set to 1.3 but actually 1.0, an unde-
sired flow rule can be installed on the switch. For example,
the group feature is not supported in OpenFlow 1.0. So, the
controller has to reject it with a message indicating that it is
the unsupported feature in OpenFlow version 1.0.

However, the REST API implementation of the ONOS
controller accepts the message and instructs the switch to
install the flow rule as shown in Figure 5. In addition, the
controller stores the flow rule with group in its internal
storage, while it actually delivers the flow rule including drop
instead of the group if there is no output. As a result,
different flow rules are placed between the ONOS controller
and the switch. Also, we found that the process of removing
and re-installing the installed flow rule is repeated at intervals
of 5 seconds infinitely because ONOS determines that the rule
is not installed. If the anomaly that we found is reproduced
over and over, the performance of the SDN controller can be
greatly reduced, which can cause a catastrophic problem for
the overall network performance.

V. CONCLUSION

Nowadays SDN controllers provide useful network func-
tions through RESTful services, so anyone can efficiently
manage their network policy and network state. However, there
have been remained many security-relevant problems with the
RESTful services, and the issues have not been addressed until
now. Therefore, in this paper, we introduce RE-CHECKER
that provides a mechanism to find out the implementation

vulnerabilities or bugs of the RESTful services offered by
various SDN controllers using black-box fuzzing. We have
found four bug types and demonstrated some vulnerable bugs.

We expect that RE-CHECKER will be able to find bugs
in other SDN controllers such as OpenDaylight [20] and
commercial products in the future work. Furthermore, since
SDN controllers have other RESTful services as well not only
the flow management, we plan to extend RE-CHECKER so
that it can find the vulnerabilities in those services.
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