

EO-VLM: VLM-Guided Energy Overload Attacks on Vision Models

Minjae Seo[†], Myoungsung You[‡], Junhee Lee[§], Jaehan Kim[‡], Hwanjo Heo[†], Jintae Oh[†], and Jinwoo Kim[§]

† ETRI, [‡] KAIST, [§] Kwangwoon University

Background

- Vision Language Model (VLM)
 - Multimodal Integration using Transformer: VLMs, like DALL-E 3, integrate vision and language by using Transformer, allowing them to process and link both visual and textual information seamlessly.
 - Flexible Task Support: They handle a range of tasks including image editing, captioning, and generating images from text, thereby showing their versatility across applications.
 - **Pre-training on Large Datasets:** Trained on extensive image-text pairs, VLMs learn complex relationships between visual and language elements, enabling contextually coherent outputs.

Energy Overloading Attack

• Adversaries can exploit crafted *sponge examples*, inputs designed to maximize energy consumption/latency of ML systems (Figure 1).

Figure 1: The Overview of Sponge Examples [EuroSP'21]

- Energy Overloading Attacks on Vision Models
 - Overload [CVPR'24]: latency attacks to target object detection on edge devices by manipulating the number of objects fed into Non-Maximum Suppression (NMS) to increase inference time.
 - **SlowTrack** [AAAI'24]: used a two-stage adversarial attack strategy targeting object detection and tracking in autonomous driving systems to increase latency in camera-based perception.

Motivation

Lack of Safety Filters in VLMs!

 VLMs like DALL-E 3 lack robust safety filters, allowing adversarial noise image generation via simple prompts.

Limitations of Existing Solutions

- White-box Assumption
 - Existing solutions assume a white-box setting, where adversaries have full access to the vision model's architecture and parameters, which is unrealistic in most real-world scenarios.
- Target Specificity
 - Existing solutions are highly target-specific, requiring manual adaption for specific models (e.g., YOLOv5), making it time-consuming and costly to apply them across diverse vision models.

Our Approach

• EO-VLM: VLM-Guided Energy Overload Attacks on Vision Models

Figure 2: The Overview of **EO-VLM**

Identify Compromising Factors:

• Query the VLM for elements that contribute to energy overloading, such as increasing anchor box proposals or modifying pixel values.

Generate Adversarial Prompts:

- Create structured prompts as follows:
- $P_{adv} = concat\left(P_{object}, P_{strategy}^{(i)}, P_{action}\right)$
- P_{object} = Define task objectives (e.g., increase YOLOv8's energy)
- $P_{strategy}^{(i)}$ = Represent various strategies (e.g., introducing dense)
- P_{action} = Specify the action to achieve the goal (e.g., combining the noise with the image)

Query with Base Image and Prompts:

• Feed the VLM with the base image and the structured adversarial prompts to produce images with integrated adversarial noise.

Measure Energy Cost:

- Calculate the energy cost $E=W\cdot t$, where W is GPU power consumption and t is inference time.
- If the energy cost remains below a threshold (E_{θ}) , adjust prompt combinations, regenerate adversarial examples, and recalculate energy until the threshold is exceeded.

Evaluation

• We evaluate the **power consumption** and **inference time** overhead on YOLOv8, MASKDINO, and Detectron2 object detection models.

Table 1: Power Consumption Overhead

Model	YOLOv8	MASKDINO	Detectron2
Base image	46.96 W	61.44 W	54.53 W
Object-based	67.83 W (+ 44.4%)	69.45 W (+ 13.1%)	60.45 W (+ 10.9%)
Steganography	67.86 W (+ 44.5%)	70.02 W (+ 14%)	64.54 W (+ 18.4%)

 YOLOv8 shows the highest power consumption increase from both object-based and steganography attacks.

Table 2: Inference Time Overhead

Model	YOLOv8	MASKDINO	Detectron2	
Base image	0.30 ms	2.56 ms	0.20 ms	
Object-based	0.36 ms (+ 21.3%)	3.32 ms (+ 29.7%)	0.30 ms (+ 50%)	
Steganography	0.37 ms (+ 23.3%)	3.60 ms (+ 40.6%)	0.28 ms (+ 40%)	

• Detectron shows the highest inference time increase from object-based attacks, while MASKDINO has the highest increase from steganography.

Future Work

• We will incorporate a reinforcement learning approach to generate adversarial prompts, further maximizing energy overloading.