EqualNet: A Secure and Practical Defense for Long-term Network Topology Obfuscation

Jinwoo Kim^{*}, Eduard Marin⁺, Mauro Conti[#], and Seungwon Shin^{*} ^{*}KAIST, ⁺Telefonica Research, [#]University of Padua

Università degli Studi di Padova

Link Flooding Attacks (LFA)

- Stealthy but powerful DDoS attacks
 - Target network infrastructure

Link Flooding Attacks (LFA)

- Stealthy but powerful DDoS attacks
 - Target network infrastructure
- Cause congestion on core routers or links \rightarrow bottlenecks
 - "Able to cut off 53% of Internet connections in some US states" [1]

[1] The Crossfire attacks, S&P '13

- 1. Scan a target network via path tracing tools (e.g., traceroute)
 - By sending probing packets (i.e., low TTL packets) to public servers

- 1. Scan a target network via path tracing tools (e.g., traceroute)
 - By sending probing packets (i.e., low TTL packets) to public servers

- 1. Scan a target network via path tracing tools (e.g., traceroute)
 - By sending probing packets (i.e., low TTL packets) to public servers

2. Analyze the network topology

- 2. Analyze the network topology
 - Derive a flow distribution to see which links are *popular*
 - Choose the links whose # flows are higher than others

Network Topology Obfuscation

- Adopt the cyber deception strategy
 - To mitigate LFAs *proactively* by deceiving attackers

Network Topology

Network Topology Obfuscation

- Adopt the cyber deception strategy
 - To mitigate LFAs *proactively* by deceiving attackers
- Pinpoint potential bottlenecks
 - By simulating attacker flows in a network

Network Topology

Network Topology Obfuscation

- Adopt the cyber deception strategy
 - To mitigate LFAs *proactively* by deceiving attackers

Α

В

C) ∋ ₹

Virtual Topology

• Pinpoint potential bottlenecks

Attacker

- By simulating attacker flows in a network
- Create a *virtual network topology*
 - Hide potential bottlenecks of a network

 (D)

E

Prior Solutions

- Rerouting probing packets to nearby links
 - e.g., LinkBait

Prior Solutions

- Skipping probing packets partially
 - e.g., NetHide, Trassare et al.

Attacker

Router

Interface

EqualNet:

A Secure and Practical Defense for Long-term Network Topology Obfuscation

Key Idea

- Generate fake responses having virtual IP addresses
 - By utilizing SDN's centralized management

Key Idea

- Generate fake responses having virtual IP addresses
 - By utilizing SDN's centralized management

Key Idea

- Generate fake responses having virtual IP addresses
 - By utilizing SDN's centralized management

#2 Keep a single virtual topology only → Adjust the virtual topology on-the-fly

Virtual Topology B

Virtual Topology A

Analyzing Network Topology

- Topology leakage
 - Diff. between the max. and min. # flows per interface
 - The lower, the more indistinguishable
- Obfuscation threshold
 - Operator's desired topology leakage
 - E.g., 80% of the topology leakage, 500 flows per interface

- Challenge
 - Attackers can compare differences of probing history

- Challenge
 - Attackers can compare differences of probing history
 - If they observe the same *neighbors* (i.e., alias resolution)

- Solution
 - Add virtual nodes to neighbors to form separate probing paths

- Solution
 - Add virtual nodes to neighbors to form separate probing paths
 - Keep the minimum number of virtual nodes (i.e., guard nodes)

Deploying Virtual Topology

- Utilizing OpenFlow
 - To detect probing packets and generate fake responses

Deploying Virtual Topology

- Utilizing OpenFlow
 - To detect probing packets and generate fake responses
- Producing indistinguishable responses
 - Choose IP addresses randomly within the same subnet
 - Randomize packet headers (e.g., IP ID) to prevent inference attacks

Why subnets?

• Routing policies are designed based on subnets

$$... (S1-A)-(S2-C)-(S3-D)...$$

<Operator's topology view>

- Operators mention subnets to inform failure positions
 - E.g., Is S3 (e.g., 10.0.1/24) reachable from S2 (e.g., 10.0.2/24)?

Adver	tisement of Equinix Chicago IX Subnet
Graham Joh	nston j <u>ohnstong at westmancom.com</u>
Wed Mar 27	21:36:20 UTC 2019
 Previor Next m Messa 	us message (by thread): <u>TestIT app to measure rural broadband access</u> nessage (by thread): <u>Advertisement of Equinix Chicago IX Subnet</u> ges sorted by: <u>[date] [thread] [subject] [author]</u>
This aftern	oon at around 12:17 central time today we began learning the subnet for the
Equinix IX	in Chicago via a transit provider; we are on the IX as well. The subnet in
question is	208.115.136.0/23. Using stat.ripe.net I can see that this subnet is also bein

<Mail threads from NANOG>

Evaluation

- Experiments
 - 1. Leakage reduction vs. virtual nodes
 - 2. Resistance to topology inference
 - 3. Protection against alias resolution
 - 4. Topology similarity and utility
 - 5. Fingerprinting via RTT measurement
 - 6. Partial deployment
- Dataset
 - Three router-level topology data
 - From CAIDA ITDK (Internet Topology Data Kit)

AS 13576 (small) AS 35132 (medium) AS 35575 (large)

Evaluation

- Experiments
 - 1. Leakage reduction vs. virtual nodes
 - 2. Resistance to topology inference
 - 3. Protection against alias resolution
 - 4. Topology similarity and utility
 - 5. Fingerprinting via RTT measurement
 - 6. Partial deployment

- Dataset
 - Three router-level topology data
 - From CAIDA ITDK (Internet Topology Data Kit)

AS 13576 (small) AS 35132 (medium) AS 35575 (large)

• Measured leakage reduction to evaluate equalization effectiveness

There is a need to consider a trade-off between the topology leakage and virtual nodes

Resistance to Topology Inference

- Can attackers infer a real network topology?
 - Assuming that all links use the same mask (best for attackers)
 - By trying all possible masks (e.g., from /24 to /29)
- Compared how the inferred topology is similar with the real

Resistance to Topology Inference

- Can attackers infer a real network topology?
 - Assuming that all links use the same mask (best for attackers)
 - By trying all possible masks (e.g., from /24 to /29)
- Compared how the inferred topology is similar with the real

Resistance to Topology Inference

- Can attackers infer a real network topology?
 - Assuming that all links use the same mask (best for attackers)
 - By trying all possible masks (e.g., from /24 to /29)
- Compared how the inferred topology is similar with the real

In practice, inferring a real network topology is more difficult because attackers cannot know exact mask (i.e., CIDR)

Protection Against Alias Resolution

- Can attackers distinguish fake responses using *alias resolution*?
 - To identify the same router from different responses

- Tested with the popularly used tools
 - Scamper: Comparison of IP ID patterns
 - Kapar: Analysis of common neighbors
 - iffinder: Utilization of direct UDP probes to unused ports

Protection Against Alias Resolution

root@ambuhser:~# scamper -I "dealias -W 1000 -m ally -p '-P udp' 10.0.2.102 10.0.2.101" 10.0.2.102 10.0.2.101 not aliases -> Cannot detect aliases

<Scamper>

Protection Against Alias Resolution

root@ambuhser:~*# scamper -I "dealias -W 1000 -m ally -p '-P udp' 10.0.2.102 10.0.2.101" 10.0.2.102 10.0.2.101 not aliases → Cannot detect aliases

<Scamper>

Using local port 48196.

---- Cannot detect aliases

Attackers cannot distinguish fake responses from real ones even if they use a sophisticated analysis technique

Summary

- Prior network topology obfuscation solutions
 - Proposed to mitigate link flooding attacks proactively
 - Limited in security and practicality for long-term
- EqualNet: A secure and practical defense for long-term network topology obfuscation
 - Generates fake responses having virtual IP addresses
 - Hides interfaces by adding virtual nodes
 - Keeps topology utility for subnet-level

Thank you for listening

jinwoo.kim@kaist.ac.kr