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• ODIN: A hardware-based Tor traffic obfuscation system (Figure 3)

• Context-aware obfuscation
• The CID/SID Sync Module perpetually synchronizes with the circuit 

identifier (CID) and stream identifier (SID) information derived from 
the Tor application through its default API.

• Bandwidth-saving obfuscation
• The Packet processor module minimizes Tor bandwidth by 

piggybacking on packets already destined for the same final server.
• It removes the headers of two paired packets and combines the 

remaining contents of both packets with a virtual header.

Background and Motivation

• CPU resource exhaustion
• Secret Tor relay nodes (e.g., bridge nodes) or pluggable transports 

(e.g., meek) randomize packet bytes or disguise a Tor connection as 
other legitimate connections (e.g., Skype).

• However, they rely on software-based systems to process individual 
packets, which significantly consumes CPU resources.

• Tor bandwidth waste
• Existing countermeasures (e.g., BuFLO [S&P’12], ditto [NDSS’22]) 

add crafted padding bytes to the original packets and control packet 
transmission timing.

• However, the inclusion of padding bytes imposes burdens on 
individual packets and can waste Tor network bandwidth (see gray 
boxes in Figure 2).

Limitations of Existing Solutions

• The evaluation of ODIN primarily centers on two key aspects:
• Its efficacy in obfuscating Tor traffic.
• Its ability to impose lower overhead compared to an existing 

solution.

• Our private Tor testbed comprises three Tor container nodes (i.e., entry, 
middle, and exit) running on two physical machines with several 
services (e.g., video streaming and file downloading).

• Figure 4 exhibits distinct flow patterns without (i.e., Flow 1 and Flow 2) 
and with ODIN’s obfuscation (i.e., Obfus.).

• Figure 5 presents the measured CPU usage within a specific time 
window, comparing the deployment of ODIN and obfs4. On average, 
ODIN exhibits a 5% reduction in CPU overhead compared to obfs4.

Evaluation

• Tor Circuit
• Entry node serves as the initial ingress point in the Tor network. 
• Middle node is a linking chain in the Tor network.
• Exit node is the last egress point where Tor traffic hits the public 

Internet. It communicates directly with the server, making it 
capable of identifying the server’s true identity and decrypting the 
encrypted layers of Tor traffic.

• Given its significance, several reputable organizations already 
operate trusted exit nodes with enhanced security features and 
capabilities.

• Flow Correlation Attack (FCA)
• Measures the flow similarity of traversed flows observed from 

ingress and egress points (Figure 1)

• FCA with statistical metrics
• RAPTOR [USENIX Security’15] used the Spearman correlation 

coefficient, which evaluates the statistical dependence between the 
rankings of two given variables.

• FCA with deep learning
• DeepCorr [CCS’18] leveraged an advanced deep learning model to 

learn hidden patterns of flow-level features in Tor traffic.

System Design
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• We will assess the resilience of ODIN obfuscated traffic against 
advanced FCAs, such as deep learning-based techniques.

Conclusion and Future Work

Figure 1: The main setting of a flow correlation attack
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Figure 4: Traffic pattern 
before/after deploying ODIN

Figure 5: CPU usage of ODIN 
and obfs4
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Figure 2: Common software-based traffic obfuscation methods
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