
Towards a Secure and Practical System 
to Obfuscate Tor Network Traffic 

Minjae Seo†∗, Myoungsung You†∗, Taejune Park‡ , Seungwon Shin†, and Jinwoo Kim§∗∗

† KAIST, ‡ Chonnam National University, § Kwangwoon University

• ODIN: A hardware-based Tor traffic obfuscation system (Figure 3)

• Context-aware obfuscation
• The CID/SID Sync Module perpetually synchronizes with the circuit 

identifier (CID) and stream identifier (SID) information derived from 
the Tor application through its default API.

• Bandwidth-saving obfuscation
• The Packet processor module minimizes Tor bandwidth by 

piggybacking on packets already destined for the same final server.
• It removes the headers of two paired packets and combines the 

remaining contents of both packets with a virtual header.

Background and Motivation

• CPU resource exhaustion
• Secret Tor relay nodes (e.g., bridge nodes) or pluggable transports 

(e.g., meek) randomize packet bytes or disguise a Tor connection as 
other legitimate connections (e.g., Skype).

• However, they rely on software-based systems to process individual 
packets, which significantly consumes CPU resources.

• Tor bandwidth waste
• Existing countermeasures (e.g., BuFLO [S&P’12], ditto [NDSS’22]) 

add crafted padding bytes to the original packets and control packet 
transmission timing.

• However, the inclusion of padding bytes imposes burdens on 
individual packets and can waste Tor network bandwidth (see gray 
boxes in Figure 2).

Limitations of Existing Solutions

• The evaluation of ODIN primarily centers on two key aspects:
• Its efficacy in obfuscating Tor traffic.
• Its ability to impose lower overhead compared to an existing 

solution.

• Our private Tor testbed comprises three Tor container nodes (i.e., entry, 
middle, and exit) running on two physical machines with several 
services (e.g., video streaming and file downloading).

• Figure 4 exhibits distinct flow patterns without (i.e., Flow 1 and Flow 2) 
and with ODIN’s obfuscation (i.e., Obfus.).

• Figure 5 presents the measured CPU usage within a specific time 
window, comparing the deployment of ODIN and obfs4. On average, 
ODIN exhibits a 5% reduction in CPU overhead compared to obfs4.

Evaluation

• Tor Circuit
• Entry node serves as the initial ingress point in the Tor network. 
• Middle node is a linking chain in the Tor network.
• Exit node is the last egress point where Tor traffic hits the public 

Internet. It communicates directly with the server, making it 
capable of identifying the server’s true identity and decrypting the 
encrypted layers of Tor traffic.

• Given its significance, several reputable organizations already 
operate trusted exit nodes with enhanced security features and 
capabilities.

• Flow Correlation Attack (FCA)
• Measures the flow similarity of traversed flows observed from 

ingress and egress points (Figure 1)

• FCA with statistical metrics
• RAPTOR [USENIX Security’15] used the Spearman correlation 

coefficient, which evaluates the statistical dependence between the 
rankings of two given variables.

• FCA with deep learning
• DeepCorr [CCS’18] leveraged an advanced deep learning model to 

learn hidden patterns of flow-level features in Tor traffic.

System Design

∗ Co-first authors, ∗∗ Corresponding author

• We will assess the resilience of ODIN obfuscated traffic against 
advanced FCAs, such as deep learning-based techniques.

Conclusion and Future Work

Figure 1: The main setting of a flow correlation attack

Clients

Tor Entry Tor Exit

Tor Network

Malicious
ISP Server

Malicious
ISP

Ingress flow

Egress flow

Figure 3: The system overview of ODIN

Obfuscated

Size

Time

Flow pattern

Tx Ty Tz

Size

Time

Adversary

Tz

P1 P2

ODIN

CID/SID Sync
Module

Packet Processor
Module

Exception Handler 
Random Data

P1,1

P2,1

Tor Exit

Tor Network

P1 P2

SmartNIC

P2,1

P1,1

V

P1
P2

V
Encrypted

queue1

queue2
(CID/SID) Queue

P1 P2V

Pattern

Figure 4: Traffic pattern 
before/after deploying ODIN

Figure 5: CPU usage of ODIN 
and obfs4

Acknowledgement: This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea 
government. (MSIT) (No. RS-2022-00166401, 2022R1C1C1006967).

Figure 2: Common software-based traffic obfuscation methods

[Original traffic] [Obfuscated traffic]

Random
padding

Normalized
timingTiming 

manipulation

Packet size 
randomization

Mimicking 
traffic pattern

Traffic
obfuscator

T T


